[1] PODGORSKI J, BERG M. Global threat of arsenic in groundwater[J]. Science, 2020, 368(6493): 845-850. doi: 10.1126/science.aba1510
[2] TYLER C R, ALLAN A M. The effects of arsenic exposure on neurological and cognitive dysfunction in human and rodent studies: A review[J]. Current Environmental Health Reports, 2014, 1(2): 132-147. doi: 10.1007/s40572-014-0012-1
[3] RODRÍGUEZ-LADO L, SUN G F, BERG M, et al. Groundwater arsenic contamination throughout China[J]. Science, 2013, 341(6148): 866-868. doi: 10.1126/science.1237484
[4] LIU R P, QU J H. Review on heterogeneous oxidation and adsorption for arsenic removal from drinking water[J]. Journal of Environmental Sciences, 2021, 110: 178-188. doi: 10.1016/j.jes.2021.04.008
[5] CHOWDHURY S R, YANFUL E K. Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal[J]. Journal of Environmental Management, 2010, 91(11): 2238-2247. doi: 10.1016/j.jenvman.2010.06.003
[6] DICKSON D, LIU G L, CAI Y. Adsorption kinetics and isotherms of arsenite and arsenate on hematite nanoparticles and aggregates[J]. Journal of Environmental Management, 2017, 186: 261-267.
[7] 赵雅光, 万俊锋, 刘奉滨, 等. 零价铁(ZVI)治理水体砷污染研究进展[J]. 环境化学, 2013, 32(10): 1943-1949. doi: 10.7524/j.issn.0254-6108.2013.10.018 ZHAO Y G, WAN J F, LIU F B, et al. Application of zero-valent iron(ZVI)technology for arsenic removal from aqueous environment[J]. Environmental Chemistry, 2013, 32(10): 1943-1949 (in Chinese). doi: 10.7524/j.issn.0254-6108.2013.10.018
[8] 胡一帆, 王文兵, 仵彦卿. 弱磁场强化零价铁去除水中砷的效果[J]. 环境化学, 2019, 38(5): 1074-1081. doi: 10.1002/etc.4383 HU Y F, WANG W B, WU Y Q. The role of weak magnetic field in accelerating the removal of arsenic by zero-valent iron[J]. Environmental Chemistry, 2019, 38(5): 1074-1081 (in Chinese). doi: 10.1002/etc.4383
[9] 罗灿钰, 张琢, 赵华甫. 施氏矿物的矿物学特征及其除砷研究进展[J]. 环境化学, 2021, 40(11): 3530-3543. doi: 10.7524/j.issn.0254-6108.2020070302 LUO C Y, ZHANG Z, ZHAO H F. The mineralogical characteristics of schwertmannite and its progress in arsenic removal[J]. Environmental Chemistry, 2021, 40(11): 3530-3543 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020070302
[10] 吴川, 黄柳, 薛生国, 等. 赤泥对砷污染的调控研究进展[J]. 环境化学, 2016, 35(1): 141-149. doi: 10.7524/j.issn.0254-6108.2016.01.2015071004 WU C, HUANG L, XUE S G, et al. Review on the application of bauxite residue on As contamination remediation[J]. Environmental Chemistry, 2016, 35(1): 141-149 (in Chinese). doi: 10.7524/j.issn.0254-6108.2016.01.2015071004
[11] LI M, KUANG S P, KANG Y, et al. Recent advances in application of iron-manganese oxide nanomaterials for removal of heavy metals in the aquatic environment[J]. Science of the Total Environment, 2022, 819: 153157. doi: 10.1016/j.scitotenv.2022.153157
[12] 曾辉平, 于亚萍, 吕赛赛, 等. 基于铁锰泥的除砷颗粒吸附剂制备及其比较[J]. 环境科学, 2019, 40(11): 5002-5008. ZENG H P, YU Y P, LÜ S S, et al. Preparation and comparison of arsenic removal granular adsorbent based on iron-manganese sludge[J]. Environmental Science, 2019, 40(11): 5002-5008 (in Chinese).
[13] VIEIRA B R C, PINTOR A M A, BOAVENTURA R A R, et al. Arsenic removal from water using iron-coated seaweeds[J]. Journal of Environmental Management, 2017, 192: 224-233.
[14] ABU-NADA A, McKAY G, ABDALA A. Recent advances in applications of hybrid graphene materials for metals removal from wastewater[J]. Nanomaterials, 2020, 10(3): 595. doi: 10.3390/nano10030595
[15] 韦婧, 刘昳晗, 涂晨, 等. 铁修饰生物炭的制备及在砷污染土壤修复中的应用[J]. 环境科学, 2023, 44(2): 965-974. WEI J, LIU Y H, TU C, et al. Preparation of iron modified biochar and its application in arsenic contaminated soil remediation[J]. Environmental Science, 2023, 44(2): 965-974 (in Chinese).
[16] SAMUEL M S, SELVARAJAN E, SARSWAT A, et al. Nanomaterials as adsorbents for As(III) and As(V) removal from water: A review[J]. Journal of Hazardous Materials, 2022, 424: 127572. doi: 10.1016/j.jhazmat.2021.127572
[17] JAIN R. Recent advances of magnetite nanomaterials to remove arsenic from water[J]. RSC Advances, 2022, 12(50): 32197-32209. doi: 10.1039/D2RA05832D
[18] 芦琳, 颜利玲, 梁美娜, 等. 磁性氧化铁/桑树杆生物炭的制备及其对砷污染土壤溶解性有机碳和砷形态的影响[J]. 环境科学, 2022, 43(11): 5214-5223. LU L, YAN L L, LIANG M N, et al. Preparation of magnetic iron oxide/mulberry straw biochar and its effects on dissolved organic carbon and arsenic forms in arsenic contaminated soil[J]. Environmental Science, 2022, 43(11): 5214-5223 (in Chinese).
[19] MAGRO M, MOLINARI S, VENERANDO A, et al. Colloidal maghemite nanoparticles with oxyhydroxide-like interface and chiroptical properties[J]. Applied Surface Science, 2020, 534: 147567. doi: 10.1016/j.apsusc.2020.147567
[20] LIU Z M, WU S H, JIA S Y, et al. Novel hematite nanorods and magnetite nanoparticles prepared from MIL-100(Fe) template for the removal of As(V)[J]. Materials Letters, 2014, 132: 8-10. doi: 10.1016/j.matlet.2014.06.059
[21] DAS G K, BONIFACIO C S, de ROJAS J, et al. Ultra-long magnetic nanochains for highly efficient arsenic removal from water[J]. Journal of Materials Chemistry A, 2014, 2(32): 12974-12981. doi: 10.1039/C4TA02614D
[22] CHENG W, XU J, WANG Y J, et al. Dispersion-precipitation synthesis of nanosized magnetic iron oxide for efficient removal of arsenite in water[J]. Journal of Colloid and Interface Science, 2015, 445: 93-101. doi: 10.1016/j.jcis.2014.12.082
[23] CHENG W, ZHANG W D, HU L J, et al. Etching synthesis of iron oxide nanoparticles for adsorption of arsenic from water[J]. RSC Advances, 2016, 6(19): 15900-15910. doi: 10.1039/C5RA26143K
[24] FERREIRA L S, TRIERWEILER J O. Modeling and simulation of the polymeric nanocapsule formation process[J]. IFAC Proceedings Volumes, 2009, 42(11): 405-410. doi: 10.3182/20090712-4-TR-2008.00064
[25] 韩帅鹏, 唐李文, 刘勤, 等. 磁性含磷油茶壳生物炭对水中磺胺甲噁唑的吸附特性[J]. 环境科学,2024, 45(2): 898-908. HAN S P, TANG L W, LIU Q, et al. Adsorption properties of magnetic phosphorous oil tea shell biochar on sulfamethoxazole in water[J]. Environmental Science, 2024, 45(2): 898-908(in Chinese).
[26] MILONJIĆ S K, KOPEČNI M M, ILIĆ Z E. The point of zero charge and adsorption properties of natural magnetite[J]. Journal of Radioanalytical Chemistry, 1983, 78(1): 15-24. doi: 10.1007/BF02519745
[27] GOLDBERG S, JOHNSTON C T. Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling[J]. Journal of Colloid and Interface Science, 2001, 234(1): 204-216. doi: 10.1006/jcis.2000.7295