[1] 展长振, 曾晓婕, 吕瑞涛, 等. 石墨质多孔炭的制备及其双离子电容储能机理[J]. 新型炭材料(中英文), 2023, 38(3): 576-582. doi: 10.1016/S1872-5805(23)60727-9 ZHAN C Z, ZENG X J, LV R T, et al. Preparation of porous graphitic carbon and its dual-ion capacitance energy storage mechanism[J]. New Carbon Materials, 2023, 38(3): 576-582 (in Chinese). doi: 10.1016/S1872-5805(23)60727-9
[2] 郝生阳, 张雨婷, 王晓清. Mo掺杂NiMnSe2的制备及其超级电容器性能[J]. 无机化学学报(中英文), 2023, 39(6): 1091-1102. HAO S Y, ZHANG Y T, WANG X Q. Preparation and supercapacitor performance of Mo-doped NiMnSe2[J]. Chinese Journal of Inorganic Chemistry, 2023, 39(6): 1091-1102 (in Chinese).
[3] LIU C F, LIU Y C, YI T, et al. Carbon materials for high-voltage supercapacitors[J]. Carbon, 2019, 145: 529-548. doi: 10.1016/j.carbon.2018.12.009
[4] CHEN X L, PAUL R, DAI L M. Carbon-based supercapacitors for efficient energy storage[J]. National Science Review, 2017, 4(3): 453-489. doi: 10.1093/nsr/nwx009
[5] JI H X, ZHAO X, QIAO Z H, et al. Capacitance of carbon-based electrical double-layer capacitors[J]. Nature Communications, 2014, 5: 3317. doi: 10.1038/ncomms4317
[6] 魏良, 王健恺, 刘凯歌, 等. 纳米纤维素/还原氧化石墨烯复合材料用于高性能超级电容器[J]. 无机化学学报(中英文), 2023, 39(3): 456-464. WEI L, WANG J K, LIU K G, et al. Nanocellulose/reduced graphene oxide composites for high performance supercapacitors[J]. Chinese Journal of Inorganic Chemistry, 2023, 39(3): 456-464 (in Chinese).
[7] KUTTAN S S, GIRIJA N, DEVAKI S J, et al. Modulating electrochemical performance of interfacially polymerized, MoS2 decorated polyaniline composites for electrochemical capacitor applications[J]. ACS Applied Energy Materials, 2022, 5(7): 8510-8525. doi: 10.1021/acsaem.2c01040
[8] ANANDHU T P, MOHAN R, CHERUSSERI J, et al. High areal capacitance and enhanced cycling stability of binder-free, pristine polyaniline supercapacitor using hydroquinone as a redox additive[J]. Electrochimica Acta, 2022, 425: 140740. doi: 10.1016/j.electacta.2022.140740
[9] HALDAR S, RASE D, SHEKHAR P, et al. Incorporating conducting polypyrrole into a polyimide COF for carbon-free ultra-high energy supercapacitor[J]. Advanced Energy Materials, 2022, 12(34): 2200754. doi: 10.1002/aenm.202200754
[10] 杨泛明, 贺国文. 颗粒状NiO的制备及其电化学性能和CO2吸附性能[J]. 化工进展(中英文), 2023, 42(2): 907-916. YANG F M, HE G W. Preparation of granular NiO for the electrochemical performance and CO2 adsorption performance[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 907-916 (in Chinese).
[11] YANG F M, ZHOU X Y, LI X D, et al. Hollow urchin-shaped NCM811 ternary-structure for high rate charge/discharge capability and efficient CO2 adsorption[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109445. doi: 10.1016/j.jece.2023.109445
[12] YANG S H, SONG X F, ZHANG P, et al. Self-assembled α- Fe2O3 mesocrystals/graphene nanohybrid for enhanced electrochemical capacitors[J]. Small, 2014, 10(11): 2270-2279. doi: 10.1002/smll.201303922
[13] LIU X. Y, ZHANG Y Q, XIA X H, et al. Self-assembled porous NiCo2O4 hetero-structure array for electrochemical capacitor[J]. Journal of Power Sources, 2013, 239: 157-163. doi: 10.1016/j.jpowsour.2013.03.106
[14] ZHANG M, CHEN Y, YANG D Y, et al. High performance MnO2 supercapacitor material prepared by modified electrodeposition method with different electrodeposition voltages[J]. Journal of Energy Storage, 2020, 29: 101363. doi: 10.1016/j.est.2020.101363
[15] NUMAN A, RAMESH KUMAR P, KHALID M, et al. Facile sonochemical synthesis of 2D porous Co3O4 nanoflake for supercapattery[J]. Journal of Alloys and Compounds, 2020, 819: 153019. doi: 10.1016/j.jallcom.2019.153019
[16] ADHIKARI H, GHIMIRE M, RANAWEERA C K, et al. Synthesis and electrochemical performance of hydrothermally synthesized Co3O4 nanostructured particles in presence of urea[J]. Journal of Alloys and Compounds 2017, 708: 628-638.
[17] XU J, LI L, GAO P, et al. Facile preparation of NiCo2O4 nanobelt/graphene composite for electrochemical capacitor application[J]. Electrochimica Acta, 2015, 166: 206-214. doi: 10.1016/j.electacta.2015.03.093
[18] LIU P B, YANG M Y, ZHOU S H, et al. Hierarchical shell-core structures of concave spherical NiO nanospines@carbon for high performance supercapacitor electrodes[J]. Electrochimica Acta, 2019, 294: 383-390. doi: 10.1016/j.electacta.2018.10.112
[19] ASKARI M B, SALARIZADEH P, BEHESHTI-MARNANI A, et al. NiO-Co3O4 -rGO as an efficient electrode material for supercapacitors and direct alcoholic fuel cells[J]. Advanced Materials Interfaces, 2021, 8(15): 2100149. doi: 10.1002/admi.202100149
[20] MOLLAMAHALE Y B, LIU Z, ZHEN Y D, et al. Simple fabrication of porous NiO nanoflowers: Growth mechanism, shape evolution and their application into Li-ion batteries[J]. International Journal of Hydrogen Energy, 2017, 42: 7202-7211 doi: 10.1016/j.ijhydene.2016.05.193
[21] SREEKANTH T V M, SINDHU R, KUMAR E P, et al. Controllable synthesis of urea-assisted Co3O4 nanostructures as an effective catalyst for urea electrooxidation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023, 657: 130576. doi: 10.1016/j.colsurfa.2022.130576
[22] MAI L Q, MINHAS-KHAN A, TIAN X C, et al. Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance[J]. Nature Communications, 2013, 4: 2923. doi: 10.1038/ncomms3923
[23] SUN K J, ZHANG Z G, PENG H, et al. Hybrid symmetric supercapacitor assembled by renewable corn silks based porous carbon and redox-active electrolytes[J]. Materials Chemistry and Physics, 2018, 218: 229-238. doi: 10.1016/j.matchemphys.2018.07.052
[24] YANG P H, MAI W J. Flexible solid-state electrochemical supercapacitors[J]. Nano Energy, 2014, 8: 274-290. doi: 10.1016/j.nanoen.2014.05.022
[25] TIAN Y, YAN J W, XUE R, et al. Capacitive properties of activated carbon in K4Fe(CN)6[J]. Journal of the Electrochemical Society, 2011, 158(7): A818. doi: 10.1149/1.3591061
[26] LIU Z, XIAO K K, GUO H, et al. Nitrogen-doped worm-like graphitized hierarchical porous carbon designed for enhancing area-normalized capacitance of electrical double layer supercapacitors[J]. Carbon, 2017, 117: 163-173. doi: 10.1016/j.carbon.2017.02.087