[1] |
JOMOVA K, JENISOVA Z, FESZTEROVA M, et al. Arsenic: Toxicity, oxidative stress and human disease[J]. Journal of Applied Toxicology, 2011, 31(2): 95-107. doi: 10.1002/jat.1649
|
[2] |
SISWOYO E, MIHARA Y, TANAKA S. Determination of key components and adsorption capacity of a low cost adsorbent based on sludge of drinking water treatment plant to adsorb cadmium ion in water[J]. Applied Clay Science, 2014, 97/98: 146-152. doi: 10.1016/j.clay.2014.05.024
|
[3] |
TAKDASTAN A, SAMARBAF S, TAHMASEBI Y, et al. Alkali modified oak waste residues as a cost-effective adsorbent for enhanced removal of cadmium from water: Isotherm, kinetic, thermodynamic and artificial neural network modeling[J]. Journal of Industrial and Engineering Chemistry, 2019, 78: 352-363. doi: 10.1016/j.jiec.2019.05.034
|
[4] |
JIN Y L, WANG L W, SONG Y N, et al. Integrated life cycle assessment for sustainable remediation of contaminated agricultural soil in China[J]. Environmental Science & Technology, 2021, 55(17): 12032-12042.
|
[5] |
WANG Y, TANG X W, CHEN Y M, et al. Adsorption behavior and mechanism of Cd(Ⅱ) on loess soil from China[J]. Journal of Hazardous Materials, 2009, 172(1): 30-37. doi: 10.1016/j.jhazmat.2009.06.121
|
[6] |
李烨, 孙约兵, 徐应明, 等. 镉污染区水稻土磷素含量特征及其形态分布规律[J]. 环境化学, 2017, 36(3): 542-548. doi: 10.7524/j.issn.0254-6108.2017.03.2016071302
LI Y, SUN Y B, XU Y M, et al. Characteristics and speciation distribution of phosphorus in Cd contaminated paddy soil[J]. Environmental Chemistry, 2017, 36(3): 542-548 (in Chinese). doi: 10.7524/j.issn.0254-6108.2017.03.2016071302
|
[7] |
PODGORSKI J, BERG M. Global threat of arsenic in groundwater[J]. Science, 2020, 368(6493): 845-850. doi: 10.1126/science.aba1510
|
[8] |
SINGH P, PAL P, MONDAL P, et al. Kinetics and mechanism of arsenic removal using sulfide-modified nanoscale zerovalent iron[J]. Chemical Engineering Journal, 2021, 412: 128667. doi: 10.1016/j.cej.2021.128667
|
[9] |
BASHIR A, AHMAD MALIK L, AHAD S, et al. Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods[J]. Environmental Chemistry Letters, 2019, 17(2): 729-754. doi: 10.1007/s10311-018-00828-y
|
[10] |
CHAI W S, CHEUN J Y, KUMAR P S, et al. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application[J]. Journal of Cleaner Production, 2021, 296: 126589. doi: 10.1016/j.jclepro.2021.126589
|
[11] |
李钰婷, 张亚雷, 代朝猛, 等. 纳米零价铁颗粒去除水中重金属的研究进展[J]. 环境化学, 2012, 31(9): 1349-1354.
LI Y T, ZHANG Y L, DAI C M, et al. The advance on removal of heavy metals in water by nanoscale zero-valent iron[J]. Environmental Chemistry, 2012, 31(9): 1349-1354 (in Chinese).
|
[12] |
LI X Q, ELLIOTT D W, ZHANG W X. Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects[J]. Critical Reviews in Solid State and Materials Sciences, 2006, 31(4): 111-122. doi: 10.1080/10408430601057611
|
[13] |
O’CARROLL D, SLEEP B, KROL M, et al. Nanoscale zero valent iron and bimetallic particles for contaminated site remediation[J]. Advances in Water Resources, 2013, 51: 104-122. doi: 10.1016/j.advwatres.2012.02.005
|
[14] |
SHEN Q, LIU S Y, OUYANG J, et al. Sepiolite supported stearic acid composites for thermal energy storage[J]. RSC Advances, 2016, 6(113): 112493-112501. doi: 10.1039/C6RA22015K
|
[15] |
ZHANG Y L, LI Y T, DAI C M, et al. Sequestration of Cd(Ⅱ) with nanoscale zero-valent iron (nZVI): Characterization and test in a two-stage system[J]. Chemical Engineering Journal, 2014, 244: 218-226. doi: 10.1016/j.cej.2014.01.061
|
[16] |
徐应明, 梁学峰, 孙国红, 等. 海泡石表面化学特性及其对重金属Pb2+、Cd2+、Cu2+吸附机理研究[J]. 农业环境科学学报, 2009, 28(10): 2057-2063.
XU Y M, LIANG X F, SUN G H, et al. Surface chemical characteristics of sepiolites and their adsorption mechanisms of Pb2+, Cd2+ and Cu2+[J]. Journal of Agro-Environment Science, 2009, 28(10): 2057-2063 (in Chinese).
|
[17] |
孙约兵, 王朋超, 徐应明, 等. 海泡石对镉-铅复合污染钝化修复效应及其土壤环境质量影响研究[J]. 环境科学, 2014, 35(12): 4720-4726.
SUN Y B, WANG P C, XU Y M, et al. Immobilization remediation of Cd and Pb contaminated soil: Remediation potential and soil environmental quality[J]. Environmental Science, 2014, 35(12): 4720-4726 (in Chinese).
|
[18] |
张韬, 贺洋. 海泡石环境吸附材料制备研究[J]. 非金属矿, 2016, 39(4): 46-47. doi: 10.3969/j.issn.1000-8098.2016.04.014
ZHANG T, HE Y. Environmental adsorbing material prepared by sepiolite[J]. Non-Metallic Mines, 2016, 39(4): 46-47 (in Chinese). doi: 10.3969/j.issn.1000-8098.2016.04.014
|
[19] |
AINIWAER M, ZHANG T, ZHANG N, et al. Synergistic removal of As(Ⅲ) and Cd(Ⅱ) by sepiolite-modified nanoscale zero-valent iron and a related mechanistic study[J]. Journal of Environmental Management, 2022, 319: 115658. doi: 10.1016/j.jenvman.2022.115658
|
[20] |
SUN Y B, SUN G H, XU Y M, et al. Assessment of sepiolite for immobilization of cadmium-contaminated soils[J]. Geoderma, 2013, 193/194: 149-155. doi: 10.1016/j.geoderma.2012.07.012
|
[21] |
LIANG X F, HAN J, XU Y M, et al. in situ field-scale remediation of Cd polluted paddy soil using sepiolite and palygorskite[J]. Geoderma, 2014, 235/236: 9-18. doi: 10.1016/j.geoderma.2014.06.029
|
[22] |
ZHOU F, YE G Y, GAO Y T, et al. Cadmium adsorption by thermal-activated sepiolite: Application to in situ remediation of artificially contaminated soil[J]. Journal of Hazardous Materials, 2022, 423: 127104. doi: 10.1016/j.jhazmat.2021.127104
|
[23] |
许亚琼, 王雪佳, 李荣华, 等. 纳米零价铁改性生物炭对污染土壤中Cd稳定化效果及作用机制研究[J]. 农业环境科学学报, 2022, 41(11): 2478-2487.
XU Y Q, WANG X J, LI R H, et al. Effects and mechanisms of nano zero-valent iron-modified biochar on Cd stabilization in contaminated soils[J]. Journal of Agro-Environment Science, 2022, 41(11): 2478-2487 (in Chinese).
|
[24] |
BOPARAI H K, JOSEPH M, O’CARROLL D M. Cadmium (Cd2+) removal by nano zerovalent iron: Surface analysis, effects of solution chemistry and surface complexation modeling[J]. Environmental Science and Pollution Research, 2013, 20(9): 6210-6221. doi: 10.1007/s11356-013-1651-8
|
[25] |
HABISH A J, LAZAREVIĆ S, JANKOVIĆ-ČASTVAN I, et al. Nanoscale zerovalent iron (nZVI) supported by natural and acid-activated sepiolites: The effect of the nZVI/support ratio on the composite properties and Cd2+ adsorption[J]. Environmental Science and Pollution Research, 2017, 24(1): 628-643. doi: 10.1007/s11356-016-7802-y
|
[26] |
RAMAZANPOUR ESFAHANI A, HOJATI S, AZIMI A, et al. Enhanced hexavalent chromium removal from aqueous solution using a sepiolite-stabilized zero-valent iron nanocomposite: Impact of operational parameters and artificial neural network modeling[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 49: 172-182. doi: 10.1016/j.jtice.2014.11.011
|
[27] |
LI Z T, WANG L, MENG J, et al. Zeolite-supported nanoscale zero-valent iron: New findings on simultaneous adsorption of Cd(Ⅱ), Pb(Ⅱ), and As(Ⅲ) in aqueous solution and soil[J]. Journal of Hazardous Materials, 2018, 344: 1-11. doi: 10.1016/j.jhazmat.2017.09.036
|
[28] |
MAHL C R A, TAKETA T B, BATAGLIOLI R A, et al. Chitosan functionalization with amino acids yields to higher copper ions adsorption capacity[J]. Journal of Polymers and the Environment, 2018, 26(12): 4338-4349. doi: 10.1007/s10924-018-1306-4
|
[29] |
ABAD-VALLE P, ÁLVAREZ-AYUSO E, MURCIEGO A, et al. Assessment of the use of sepiolite amendment to restore heavy metal polluted mine soil[J]. Geoderma, 2016, 280: 57-66. doi: 10.1016/j.geoderma.2016.06.015
|
[30] |
SONG N, HURSTHOUSE A, McLELLAN I, et al. Treatment of environmental contamination using sepiolite: Current approaches and future potential[J]. Environmental Geochemistry and Health, 2021, 43(7): 2679-2697. doi: 10.1007/s10653-020-00705-0
|
[31] |
FU R B, YANG Y P, XU Z, et al. The removal of chromium (Ⅵ) and lead (Ⅱ) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI)[J]. Chemosphere, 2015, 138: 726-734. doi: 10.1016/j.chemosphere.2015.07.051
|
[32] |
DANESHKHAH M, HOSSAINI H, MALAKOOTIAN M. Removal of metoprolol from water by sepiolite-supported nanoscale zero-valent iron[J]. Journal of Environmental Chemical Engineering, 2017, 5(4): 3490-3499. doi: 10.1016/j.jece.2017.06.040
|
[33] |
MALAKOOTIAN M, DANESHKHAH M, HOSSAINI H. Removal of phosphates from aqueous solution by sepiolite-nano zero valent iron composite optimization with response surface methodology[J]. International Journal of Environmental Science and Technology, 2018, 15(10): 2129-2140. doi: 10.1007/s13762-017-1520-y
|
[34] |
ALKAN M, TEKIN G, NAMLI H. FTIR and Zeta potential measurements of sepiolite treated with some organosilanes[J]. Microporous and Mesoporous Materials, 2005, 84(1/2/3): 75-83.
|
[35] |
LAZAREVIĆ S, JANKOVIĆ-ČASTVAN I, JOVANOVIĆ D, et al. Adsorption of Pb2+, Cd2+ and Sr2+ ions onto natural and acid-activated sepiolites[J]. Applied Clay Science, 2007, 37(1/2): 47-57.
|
[36] |
LIU K, LI F B, CUI J H, et al. Simultaneous removal of Cd(Ⅱ) and As(Ⅲ) by graphene-like biochar-supported zero-valent iron from irrigation waters under aerobic conditions: Synergistic effects and mechanisms[J]. Journal of Hazardous Materials, 2020, 395: 122623. doi: 10.1016/j.jhazmat.2020.122623
|
[37] |
YANG D, WANG L, LI Z T, et al. Simultaneous adsorption of Cd(Ⅱ) and As(Ⅲ) by a novel biochar-supported nanoscale zero-valent iron in aqueous systems[J]. Science of the Total Environment, 2020, 708: 134823. doi: 10.1016/j.scitotenv.2019.134823
|
[38] |
LUO H, WANG X Y, DAI R, et al. Simultaneous determination of arsenic and cadmium by hydride generation atomic fluorescence spectrometry using magnetic zero-valent iron nanoparticles for separation and pre-concentration[J]. Microchemical Journal, 2017, 133: 518-523. doi: 10.1016/j.microc.2017.04.030
|
[39] |
彭瑜, 王海娟, 王宏镔. 农田土壤砷、镉协同钝化修复的研究进展[J]. 土壤, 2021, 53(4): 692-699.
PENG Y, WANG H J, WANG H B. Advances in synergistic passivation remediation of arsenic and cadmium in farmland soil[J]. Soils, 2021, 53(4): 692-699 (in Chinese).
|
[40] |
LI B Y, WEI D N, ZHOU Y M, et al. Mechanisms of arsenate and cadmium co-immobilized on ferrihydrite inferred from ternary surface configuration[J]. Chemical Engineering Journal, 2021, 424: 130410. doi: 10.1016/j.cej.2021.130410
|
[41] |
XIE S, WANG L, XU Y M, et al. Performance and mechanisms of immobilization remediation for Cd contaminated water and soil by hydroxy ferric combined acid-base modified sepiolite (HyFe/ABsep)[J]. The Science of the Total Environment, 2020, 740: 140009. doi: 10.1016/j.scitotenv.2020.140009
|
[42] |
WANG L, LI Z T, WANG Y, et al. Performance and mechanisms for remediation of Cd(Ⅱ) and As(Ⅲ) co-contamination by magnetic biochar-microbe biochemical composite: Competition and synergy effects[J]. Science of the Total Environment, 2021, 750: 141672. doi: 10.1016/j.scitotenv.2020.141672
|
[43] |
LIU G F, MENG J, HUANG Y L, et al. Effects of carbide slag, lodestone and biochar on the immobilization, plant uptake and translocation of As and Cd in a contaminated paddy soil[J]. Environmental Pollution, 2020, 266: 115194. doi: 10.1016/j.envpol.2020.115194
|
[44] |
ZHANG C, YU Z G, ZENG G M, et al. Phase transformation of crystalline iron oxides and their adsorption abilities for Pb and Cd[J]. Chemical Engineering Journal, 2016, 284: 247-259. doi: 10.1016/j.cej.2015.08.096
|
[45] |
TIBERG C, GUSTAFSSON J P. Phosphate effects on cadmium(Ⅱ) sorption to ferrihydrite[J]. Journal of Colloid and Interface Science, 2016, 471: 103-111. doi: 10.1016/j.jcis.2016.03.016
|
[46] |
BOPARAI H K, JOSEPH M, O’CARROLL D M. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles[J]. Journal of Hazardous Materials, 2011, 186(1): 458-465. doi: 10.1016/j.jhazmat.2010.11.029
|