[1] 朱孝强, 黄亚继, 沈凯, 等. ZrO2掺杂的V2O5/TiO2催化剂表征及催化还原NOx[J]. 环境化学, 2012, 31(4): 443-449. ZHU X Q, HUANG Y J, SHEN K, et al. Characteriration of ZrO2-doped V2O5/TiO2 catalyst and its catalytic reduction of NO x by NH3[J]. Environmental Chemistry, 2012, 31(4): 443-449 (in Chinese).
[2] 张先龙, 胡晓芮, 刘仕雯, 等. 锰基累托石低温NH3-SCR催化剂的制备方法[J]. 环境化学, 2022, 41(3): 1043-1051. doi: 10.7524/j.issn.0254-6108.2020110905 ZHANG X L, HU X R, LIU S W, et al. The preparation method of manganese-based rectorite low-temperature NH3-SCR catalyst[J]. Environmental Chemistry, 2022, 41(3): 1043-1051 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020110905
[3] 黄力, 王虎, 纵宇浩, 等. 助剂Ga对V2O5-MoO3/TiO2催化剂脱硝性能的影响[J]. 化工环保, 2020, 40(2): 198-202. HUANG L, WANG H, ZONG Y H, et al. Effectof gallium as additive on denitration capability of V2O5-MoO3/TiO2 catalyst[J]. Environmental Protection of Chemical Industry, 2020, 40(2): 198-202 (in Chinese).
[4] ZHU H Y, ZHANG P F, DAI S. Recent advances of lanthanum-based perovskite oxides for catalysis[J]. ACS Catalysis, 2015, 5(11): 6370-6385. doi: 10.1021/acscatal.5b01667
[5] LIU Q, BIAN C, JIN Y F, et al. Influence of calcination temperature on the evolution of Fe species over Fe-SSZ-13 catalyst for the NH3-SCR of NO[J]. Catalysis Today, 2022, 388/389: 158-167. doi: 10.1016/j.cattod.2020.06.085
[6] ZHANG R D, VILLANUEVA A, ALAMDARI H, et al. SCR of NO by propene over nanoscale LaMn1− xCu xO3 perovskites[J]. Applied Catalysis A:General, 2006, 307(1): 85-97. doi: 10.1016/j.apcata.2006.03.019
[7] GAO E H, SUN G J, ZHANG W, et al. Surface lattice oxygen activation via Zr4+ cations substituting on A2+ sites of MnCr2O4 forming Zr xMn1− xCr2O4 catalysts for enhanced NH3-SCR performance[J]. Chemical Engineering Journal, 2020, 380: 122397. doi: 10.1016/j.cej.2019.122397
[8] MA F, LI Q, HUANG J J, et al. Morphology control and characterizations of nickel sea-urchin-like and chain-like nanostructures[J]. Journal of Crystal Growth, 2008, 310(15): 3522-3527. doi: 10.1016/j.jcrysgro.2008.04.044
[9] THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069.
[10] ZHANG G Z, LEI B M, CHEN S M, et al. Activated carbon adsorbents with micro-mesoporous structure derived from waste biomass by stepwise activation for toluene removal from air[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105387. doi: 10.1016/j.jece.2021.105387
[11] ZHANG C H, WANG C, ZHAN W C, et al. Catalytic oxidation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B = Co, Ni, Fe) catalysts[J]. Applied Catalysis B:Environmental, 2013, 129: 509-516. doi: 10.1016/j.apcatb.2012.09.056
[12] ZHAO B H, RAN R, SUN L, et al. NO catalytic oxidation over an ultra-large surface area LaMnO3+ δ perovskite synthesized by an acid-etching method[J]. RSC Advances, 2016, 6(74): 69855-69860. doi: 10.1039/C6RA12308B
[13] WANG Z Y, GUO R T, GUAN Z Z, et al. The promotion effect of Cr additive on CeZr2O x catalyst for the low-temperature selective catalytic reduction of NO x with NH3[J]. Applied Surface Science, 2019, 485: 133-140. doi: 10.1016/j.apsusc.2019.04.199
[14] GUO Q Q, JING W, HOU Y Q, et al. On the nature of oxygen groups for NH3-SCR of NO over carbon at low temperatures[J]. Chemical Engineering Journal, 2015, 270: 41-49. doi: 10.1016/j.cej.2015.01.086
[15] CHEN Z H, YANG Q, LI H, et al. Cr-MnO x mixed-oxide catalysts for selective catalytic reduction of NO x with NH3 at low temperature[J]. Journal of Catalysis, 2010, 276(1): 56-65. doi: 10.1016/j.jcat.2010.08.016
[16] WAN Y P, ZHAO W R, TANG Y, et al. Ni-Mn bi-metal oxide catalysts for the low temperature SCR removal of NO with NH3[J]. Applied Catalysis B:Environmental, 2014, 148/149: 114-122. doi: 10.1016/j.apcatb.2013.10.049
[17] YOON W, KIM Y, KIM G J, et al. Boosting low temperature De-NO x performance and SO2 resistance over Ce-doped two dimensional Mn-Cr layered double oxide catalyst[J]. Chemical Engineering Journal, 2022, 434: 134676. doi: 10.1016/j.cej.2022.134676
[18] HUO Y L, LIU K, LIU J J, et al. Effects of SO2 on standard and fast SCR over CeWO x: A quantitative study of the reaction pathway and active sites[J]. Applied Catalysis B:Environmental, 2022, 301: 120784. doi: 10.1016/j.apcatb.2021.120784
[19] YU Z L, GAO L Z, YUAN S Y, et al. Solid defect structure and catalytic activity of perovskite-type catalysts La1- xSr xNiO3-λ and La1-1.333 xTh xNiO3-λ[J]. Journal of the Chemical Society, Faraday Transactions, 1992, 88(21): 3245-3249. doi: 10.1039/FT9928803245
[20] 闫东杰, 郭通, 玉亚, 等. 以TiO2为载体的锰铈系低温SCR脱硝催化剂抗硫抗水性能研究进展[J]. 环境化学, 2022, 41(1): 352-364. doi: 10.7524/j.issn.0254-6108.2020082005 YAN D J, GUO T, YU Y, et al. SO2 and H2O poisoning resistance of TiO2 supported Mn/Ce catalysts for low-temperature selective catalytic reduction of NO x[J]. Environmental Chemistry, 2022, 41(1): 352-364 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020082005
[21] 兰馨, 赵玲. SCR催化剂抗碱(土)金属中毒及再生研究进展[J]. 环境化学, 2022, 41(11): 3778-3788. doi: 10.7524/j.issn.0254-6108.2021072501 LAN X, ZHAO L. Research progress of SCR catalyst against alkali (soil) metal poisoning and regeneration[J]. Environmental Chemistry, 2022, 41(11): 3778-3788 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021072501
[22] XUE L Y, WEI N H, ZHAO C, et al. Promotion effect of Cr addition on the activity and SO2 tolerance of CeO x catalysts for the NH3-SCR at middle-low temperature[J]. Journal of the Energy Institute, 2022, 105: 472-480. doi: 10.1016/j.joei.2022.11.001
[23] WANG J P, YAN Z, LIU L L, et al. in situ DRIFTS investigation on the SCR of NO with NH3 over V2O5 catalyst supported by activated semi-coke[J]. Applied Surface Science, 2014, 313: 660-669. doi: 10.1016/j.apsusc.2014.06.043
[24] ZHANG R D, LUO N, YANG W, et al. Low-temperature selective catalytic reduction of NO with NH3 using perovskite-type oxides as the novel catalysts[J]. Journal of Molecular Catalysis A:Chemical, 2013, 371: 86-93. doi: 10.1016/j.molcata.2013.01.018
[25] CHEN Y F, YAN H Y, TENG W X, et al. Comparative study on N2O formation pathways over bulk MoO3 and MoO3- x nanosheets decorated Fe2O3-containing solid waste NH3-SCR catalysts[J]. Fuel, 2023, 337: 127210. doi: 10.1016/j.fuel.2022.127210
[26] CHEN L, REN S, PENG H G, et al. Low-cost Mn-Ce/CuX catalyst from blast furnace slag waste for efficient low-temperature NH3-SCR[J]. Applied Catalysis A:General, 2022, 646: 118868. doi: 10.1016/j.apcata.2022.118868
[27] YU D, WANG P, LI X J, et al. Study on the role of Fe species and acid sites in NH3-SCR over the Fe-based zeolites[J]. Fuel, 2023, 336: 126759. doi: 10.1016/j.fuel.2022.126759
[28] XIE H, SHU D B, CHEN T H, et al. An in-situ DRIFTs study of Mn doped FeVO4 catalyst by one-pot synthesis for low-temperature NH3-SCR[J]. Fuel, 2022, 309: 122108. doi: 10.1016/j.fuel.2021.122108
[29] ZHU J X, LI J F, CHU B X, et al. Excitation of catalytic performance on MOFs derivative carrier by residual carbon for low-temperature NH3-SCR reaction[J]. Molecular Catalysis, 2023, 535: 112859. doi: 10.1016/j.mcat.2022.112859
[30] WANG X X, LI B B, WANG Y Q, et al. Insight into the dynamic behaviors of reactants with temperature over a tiox-based catalyst for No x removal via Nh3-scr[J]. Applied Surface Science, 2022, 605: 154689. doi: 10.1016/j.apsusc.2022.154689