[1] |
刘鹏, 常莉敏, 潘成珂, 等. 张掖市大气颗粒物水溶性离子污染特征、来源[J]. 环境化学, 2023, 42(9): 2993-3003. doi: 10.7524/j.issn.0254-6108.2022041402
LIU P, CHANG L M, PAN C K, et al. Characteristics and source apportionment of water-soluble ion as well as countermeasures for atmospheric particulate matter in Zhangye City[J]. Environmental Chemistry, 2023, 42(9): 2993-3003 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022041402
|
[2] |
蒋星星, 陈庆彩, 熊梦琪, 等. 疫情管控对关中城市群大气污染特征及颗粒物化学组成的影响[J]. 环境化学, 2023, 42(8): 2640-2650. doi: 10.7524/j.issn.0254-6108.2022032503
JIANG X X, CHEN Q C, XIONG M Q, et al. Influence of epidemic control on air pollution characteristics and chemical composition of particulate matter in Guanzhong urban agglomeration[J]. Environmental Chemistry, 2023, 42(8): 2640-2650 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022032503
|
[3] |
潘光, 杨雨欣, 王在峰, 等. 济南市钢铁集聚区大气细颗粒物中碳组分污染特征[J]. 环境化学, 2024, 43(4): 1177-1187. doi: 10.7524/j.issn.0254-6108.2022093002
PAN G, YANG Y X, WANG Z F, et al. Carbon component pollution characteristics of atmospheric fine particulate matter in iron and steel agglomeration area[J]. Environmental Chemistry, 2024, 43(4): 1177-1187(in Chinese). doi: 10.7524/j.issn.0254-6108.2022093002
|
[4] |
李智饶. 长三角(临安)大气本底站细颗粒物中活性氧类物质季节特征研究[D]. 南京: 南京信息工程大学, 2021.
LI Z R. Study on seasonal characteristics of reactive oxygen species in fine particles at atmospheric background station in Yangtze River Delta (Lin 'an)[D]. Nanjing: Nanjing University of Information Science & Technology, 2021 (in Chinese).
|
[5] |
WANG S M, ZHOU Q X, TIAN Y Z, et al. The lung microbiota affects pulmonary inflammation and oxidative stress induced by PM2.5 exposure[J]. Environmental Science & Technology, 2022, 56(17): 12368-12379.
|
[6] |
DAI P Y, SHEN D, SHEN J K, et al. The roles of Nrf2 and autophagy in modulating inflammation mediated by TLR4 - NFκB in A549 cell exposed to layer house particulate matter 2.5 (PM2.5)[J]. Chemosphere, 2019, 235: 1134-1145. doi: 10.1016/j.chemosphere.2019.07.002
|
[7] |
UTINGER B, CAMPBELL S J, BUKOWIECKI N, et al. An automated online field instrument to quantify the oxidative potential of aerosol particles via ascorbic acid oxidation[J]. Atmospheric Measurement Techniques, 2023, 16(10): 2641-2654. doi: 10.5194/amt-16-2641-2023
|
[8] |
KERMANI M, RAHMATINIA T, OSKOEI V, et al. Potential cytotoxicity of trace elements and polycyclic aromatic hydrocarbons bounded to particulate matter: A review on in vitro studies on human lung epithelial cells[J]. Environmental Science and Pollution Research, 2021, 28(40): 55888-55904. doi: 10.1007/s11356-021-16306-y
|
[9] |
TANG Z Y, SARNAT J A, WEBER R J, et al. The oxidative potential of fine particulate matter and biological perturbations in human plasma and saliva metabolome[J]. Environmental Science & Technology, 2022, 56(11): 7350-7361.
|
[10] |
ZHANG H S, WANG L M, CHU Y W. Reactive oxygen species: The signal regulator of B cell[J]. Free Radical Biology and Medicine, 2019, 142: 16-22. doi: 10.1016/j.freeradbiomed.2019.06.004
|
[11] |
CROBEDDU B, BAUDRIMONT I, DEWEIRDT J, et al. Lung antioxidant depletion: A predictive indicator of cellular stress induced by ambient fine particles[J]. Environmental Science & Technology, 2020, 54(4): 2360-2369.
|
[12] |
周海涛. 大气细颗粒物的健康风险及其诱导羟基自由基的潜势分析[D]. 南京: 南京信息工程大学, 2021.
ZHOU H T. Health risks of atmospheric fine particles and their potential to induce hydroxyl radicals[D]. Nanjing: Nanjing University of Information Science & Technology, 2021 (in Chinese).
|
[13] |
VINSON A, SIDWELL A, BLACK O, et al. Seasonal variation in the chemical composition and oxidative potential of PM2.5[J]. Atmosphere, 2020, 11(10): 1086. doi: 10.3390/atmos11101086
|
[14] |
PIETROGRANDE M C, DEMARIA G, COLOMBI C, et al. Seasonal and spatial variations of PM10 and PM2.5 oxidative potential in five urban and rural sites across Lombardia region, Italy[J]. International Journal of Environmental Research and Public Health, 2022, 19(13): 7778. doi: 10.3390/ijerph19137778
|
[15] |
张东, 张元勋, 尚晶, 等. 北京市PM2.5中类腐殖质的生物氧化应激效应初探[J]. 环境科学研究, 2022, 35(8): 1986-1995.
ZHANG D, ZHANG Y X, SHANG J, et al. Preliminary study on biological oxidative stress effects of humic-like substances in PM2.5 in Beijing[J]. Research of Environmental Sciences, 2022, 35(8): 1986-1995 (in Chinese).
|
[16] |
BERG K E, CLARK K M, LI X Y, et al. High-throughput, semi-automated dithiothreitol (DTT) assays for oxidative potential of fine particulate matter[J]. Atmospheric Environment, 2020, 222: 117132. doi: 10.1016/j.atmosenv.2019.117132
|
[17] |
QUINN C, MILLER-LIONBERG D D, KLUNDER K J, et al. Personal exposure to PM2.5 black carbon and aerosol oxidative potential using an automated microenvironmental aerosol sampler (AMAS)[J]. Environmental Science & Technology, 2018, 52(19): 11267-11275.
|
[18] |
PIETROGRANDE M C, BACCO D, TRENTINI A, et al. Effect of filter extraction solvents on the measurement of the oxidative potential of airborne PM2.5[J]. Environmental Science and Pollution Research, 2021, 28(23): 29551-29563. doi: 10.1007/s11356-021-12604-7
|
[19] |
张曼曼, 李慧蓉, 杨闻达, 等. 基于DTT法测量广州市区PM2.5的氧化潜势[J]. 中国环境科学, 2019, 39(6): 2258-2266. doi: 10.3969/j.issn.1000-6923.2019.06.003
ZHANG M M, LI H R, YANG W D, et al. Measurement based on DTT method of the PM2.5 oxidative potential in Guangzhou urban area[J]. China Environmental Science, 2019, 39(6): 2258-2266 (in Chinese). doi: 10.3969/j.issn.1000-6923.2019.06.003
|
[20] |
FREZZINI M A, de FRANCESCO N, MASSIMI L, et al. Effects of operating conditions on PM oxidative potential assays[J]. Atmospheric Environment, 2022, 268: 118802. doi: 10.1016/j.atmosenv.2021.118802
|
[21] |
张俊美. 山东典型地区PM2.5中无机元素、多环芳烃及其衍生物污染特征和氧化潜势[D]. 济南: 山东大学, 2019.
ZHANG J M. Pollution characteristics and oxidation potential of inorganic elements, polycyclic aromatic hydrocarbons and their derivatives in PM2.5 in typical areas of Shandong Province[D]. Jinan: Shandong University, 2019 (in Chinese).
|
[22] |
MA X Y, NIE D Y, CHEN M D, et al. The relative contributions of different chemical components to the oxidative potential of ambient fine particles in Nanjing area[J]. International Journal of Environmental Research and Public Health, 2021, 18(6): 2789. doi: 10.3390/ijerph18062789
|
[23] |
KUMAGAI Y, KOIDE S, TAGUCHI K, et al. Oxidation of proximal protein sulfhydryls by phenanthraquinone, a component of diesel exhaust particles[J]. Chemical Research in Toxicology, 2002, 15(4): 483-489. doi: 10.1021/tx0100993
|
[24] |
CHO A K, SIOUTAS C, MIGUEL A H, et al. Redox activity of airborne particulate matter at different sites in the Los Angeles Basin[J]. Environmental Research, 2005, 99(1): 40-47. doi: 10.1016/j.envres.2005.01.003
|
[25] |
CHARRIER J G, ANASTASIO C. On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: Evidence for the importance of soluble transition metals[J]. Atmospheric Chemistry and Physics, 2012, 12(5): 11317-11350.
|
[26] |
FANG T, VERMA V, GUO H, et al. A semi-automated system for quantifying the oxidative potential of ambient particles in aqueous extracts using the dithiothreitol (DTT) assay: Results from the Southeastern Center for Air Pollution and Epidemiology (SCAPE)[J]. Atmospheric Measurement Techniques, 2015, 8(1): 471-482. doi: 10.5194/amt-8-471-2015
|
[27] |
MUDWAY I S, STENFORS N, DUGGAN S T, et al. An in vitro and in vivo investigation of the effects of diesel exhaust on human airway lining fluid antioxidants[J]. Archives of Biochemistry and Biophysics, 2004, 423(1): 200-212. doi: 10.1016/j.abb.2003.12.018
|
[28] |
DONISELLI N, MONZEGLIO E, dal PALÙ A, et al. The identification of an integral membrane, cytochrome c urate oxidase completes the catalytic repertoire of a therapeutic enzyme[J]. Scientific Reports, 2015, 5: 13798. doi: 10.1038/srep13798
|
[29] |
BATES J T, FANG T, VERMA V, et al. Review of acellular assays of ambient particulate matter oxidative potential: Methods and relationships with composition, sources, and health effects[J]. Environmental Science & Technology, 2019, 53(8): 4003-4019.
|
[30] |
RAO L F, ZHANG L Y, WANG X Z, et al. Oxidative potential induced by ambient particulate matters with acellular assays: A review[J]. Processes, 2020, 8(11): 1410. doi: 10.3390/pr8111410
|
[31] |
SHAHPOURY P, HARNER T, LAMMEL G, et al. Development of an antioxidant assay to study oxidative potential of airborne particulate matter[J]. Atmospheric Measurement Techniques, 2019, 12(12): 6529-6539. doi: 10.5194/amt-12-6529-2019
|
[32] |
RIPLEY S, MINET L, ZALZAL J, et al. Predicting spatial variations in multiple measures of PM2.5 oxidative potential and magnetite nanoparticles in Toronto and Montreal, Canada[J]. Environmental Science & Technology, 2022, 56(11): 7256-7265.
|
[33] |
WEICHENTHAL S, SHEKARRIZFARD M, TRAUB A, et al. Within-city spatial variations in multiple measures of PM2.5 oxidative potential in Toronto, Canada[J]. Environmental Science & Technology, 2019, 53(5): 2799-2810.
|
[34] |
SIMONETTI G, CONTE E, MASSIMI L, et al. RETRACTED: Oxidative potential of particulate matter components generated by specific emission sources[J]. Journal of Aerosol Science, 2018, 126: 99-109. doi: 10.1016/j.jaerosci.2018.08.011
|
[35] |
FANG T, VERMA V, BATES J T, et al. Oxidative potential of ambient water-soluble PM2.5 in the southeastern United States: Contrasts in sources and health associations between ascorbic acid (AA) and dithiothreitol (DTT) assays[J]. Atmospheric Chemistry and Physics, 2016, 16(6): 3865-3879. doi: 10.5194/acp-16-3865-2016
|
[36] |
CALAS A, UZU G, BESOMBES J L, et al. Seasonal variations and chemical predictors of oxidative potential (OP) of particulate matter (PM), for seven urban French sites[J]. Atmosphere, 2019, 10(11): 698. doi: 10.3390/atmos10110698
|
[37] |
FULLER S J, WRAGG F P H, NUTTER J, et al. Comparison of on-line and off-line methods to quantify reactive oxygen species (ROS) in atmospheric aerosols[J]. Atmospheric Environment, 2014, 92: 97-103. doi: 10.1016/j.atmosenv.2014.04.006
|
[38] |
FREZZINI M A, Di IULIO G, TIRABOSCHI C, et al. A new method for the assessment of the oxidative potential of both water-soluble and insoluble PM[J]. Atmosphere, 2022, 13(2): 349. doi: 10.3390/atmos13020349
|
[39] |
SHAN X F, LIU L, LI G, et al. PM2.5 and the typical components cause organelle damage, apoptosis and necrosis: Role of reactive oxygen species[J]. Science of the Total Environment, 2021, 782: 146785. doi: 10.1016/j.scitotenv.2021.146785
|
[40] |
GRANGE S K, UZU G, WEBER S, et al. Linking Switzerland’s PM10 and PM2.5 oxidative potential (OP) with emission sources[J]. Atmospheric Chemistry and Physics, 2022, 22(10): 7029-7050. doi: 10.5194/acp-22-7029-2022
|
[41] |
孙浩堯, 王玛敏, 陈庆彩. 大气活性氧物质污染特征、机制及其来源研究进展[J]. 环境化学, 2022, 41(6): 2052-2061. doi: 10.7524/j.issn.0254-6108.2021082303
SUN H Y, WANG M M, CHEN Q C. Advances in research on the pollution characteristics, mechanisms and sources of active reactive oxygen species in the atmosphere[J]. Environmental Chemistry, 2022, 41(6): 2052-2061 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021082303
|
[42] |
ZOMER B, COLLÉ L, JEDYŃSKA A, et al. Chemiluminescent reductive acridinium triggering (CRAT)—Mechanism and applications[J]. Analytical and Bioanalytical Chemistry, 2011, 401(9): 2945-2954. doi: 10.1007/s00216-011-5342-3
|
[43] |
YANG A, HELLACK B, LESEMAN D, et al. Temporal and spatial variation of the metal-related oxidative potential of PM2.5 and its relation to PM2.5 mass and elemental composition[J]. Atmospheric Environment, 2015, 102: 62-69. doi: 10.1016/j.atmosenv.2014.11.053
|
[44] |
李升苹. 西安市大气颗粒物中环境持久性自由基的来源及其氧化潜能特征研究[D]. 西安: 陕西科技大学, 2021.
LI S P. Study on the sources and oxidation potential characteristics of environmental persistent free radicals in atmospheric particles in Xi 'an[D]. Xi'an: Shaanxi University of Science & Technology, 2021 (in Chinese).
|
[45] |
LI X Y, KUANG X M, YAN C Q, et al. Oxidative potential by PM2.5 in the North China plain: Generation of hydroxyl radical[J]. Environmental Science & Technology, 2019, 53(1): 512-520.
|
[46] |
JUNG H, GUO B, ANASTASIO C, et al. Quantitative measurements of the generation of hydroxyl radicals by soot particles in a surrogate lung fluid[J]. Atmospheric Environment, 2006, 40(6): 1043-1052. doi: 10.1016/j.atmosenv.2005.11.015
|
[47] |
MA S X, REN K, LIU X W, et al. Production of hydroxyl radicals from Fe-containing fine particles in Guangzhou, China[J]. Atmospheric Environment, 2015, 123: 72-78. doi: 10.1016/j.atmosenv.2015.10.057
|
[48] |
WEBER S, UZU G, CALAS A, et al. An apportionment method for the oxidative potential of atmospheric particulate matter sources: Application to a one-year study in Chamonix, France[J]. Atmospheric Chemistry and Physics, 2018, 18(13): 9617-9629. doi: 10.5194/acp-18-9617-2018
|
[49] |
WANG Y Q, WANG M M, LI S P, et al. Study on the oxidation potential of the water-soluble components of ambient PM2.5 over Xi'an, China: Pollution levels, source apportionment and transport pathways[J]. Environment International, 2020, 136: 105515. doi: 10.1016/j.envint.2020.105515
|
[50] |
LI Z R, NIE D Y, CHEN M D, et al. Seasonal variation of oxidative potential of water-soluble components in PM2.5 and PM1 in the Yangtze River Delta, China[J]. Air Quality, Atmosphere & Health, 2021, 14(11): 1825-1836.
|
[51] |
马晓云. 南京地区PM2.5氧化潜能及细胞毒性研究[D]. 南京: 南京信息工程大学, 2021.
MA X Y. Study on oxidation potential and cytotoxicity of PM2.5 in Nanjing[D]. Nanjing: Nanjing University of Information Science & Technology, 2021 (in Chinese).
|
[52] |
YU S Y, LIU W J, XU Y S, et al. Characteristics and oxidative potential of atmospheric PM2.5 in Beijing: Source apportionment and seasonal variation[J]. Science of the Total Environment, 2019, 650: 277-287. doi: 10.1016/j.scitotenv.2018.09.021
|
[53] |
任娇, 赵荣荣, 王铭, 等. 太原市冬季不同污染程度下PM2.5的化学组成、消光特征及氧化潜势[J]. 环境科学, 2022, 43(5): 2317-2328.
REN J, ZHAO R R, WANG M, et al. Chemical compositions, light extinction effect, and oxidative potential of PM2.5 under different pollution levels during winter in Taiyuan[J]. Environmental Science, 2022, 43(5): 2317-2328 (in Chinese).
|
[54] |
吴继炎, 杨池, 张春燕, 等. 保定市冬季PM2.5的氧化潜势特征及其影响来源分析[J]. 环境科学, 2022, 43(6): 2878-2887.
WU J Y, YANG C, ZHANG C Y [et al. Analysis on the characteristics of oxidation potential and influence sources of PM2.5 in Baoding city in winter[J]. Environmental Science, 2022, 43(6): 2878-2887 (in Chinese).
|
[55] |
陈丹鈜, 张志豪, 张珅, 等. 武汉市冬季重污染期PM2.5的氧化潜势分析[J]. 环境科学与技术, 2020, 43(10): 171-176.
CHEN D H, ZHANG Z H, ZHANG S, et al. Analysis of PM2.5 oxidative potential during a period of heavy pollution in winter, Wuhan[J]. Environmental Science & Technology, 2020, 43(10): 171-176 (in Chinese).
|
[56] |
WANG J P, LIN X, LU L P, et al. Temporal variation of oxidative potential of water soluble components of ambient PM2.5 measured by dithiothreitol (DTT) assay[J]. Science of the Total Environment, 2019, 649: 969-978. doi: 10.1016/j.scitotenv.2018.08.375
|
[57] |
LIU W J, XU Y S, LIU W X, et al. Oxidative potential of ambient PM2.5 in the coastal cities of the Bohai Sea, Northern China: Seasonal variation and source apportionment[J]. Environmental Pollution, 2018, 236: 514-528. doi: 10.1016/j.envpol.2018.01.116
|
[58] |
YANG F, LIU C, QIAN H. Comparison of indoor and outdoor oxidative potential of PM2.5: Pollution levels, temporal patterns, and key constituents[J]. Environment International, 2021, 155: 106684. doi: 10.1016/j.envint.2021.106684
|
[59] |
PUTHUSSERY J V, SINGH A, RAI P, et al. Real-time measurements of PM2.5 oxidative potential using a dithiothreitol assay in Delhi, India[J]. Environmental Science & Technology Letters, 2020, 7(7): 504-510.
|
[60] |
PARASKEVOPOULOU D, BOUGIATIOTI A, STAVROULAS I, et al. Yearlong variability of oxidative potential of particulate matter in an urban Mediterranean environment[J]. Atmospheric Environment, 2019, 206: 183-196. doi: 10.1016/j.atmosenv.2019.02.027
|
[61] |
LIN M F, YU J Z. Assessment of interactions between transition metals and atmospheric organics: Ascorbic acid depletion and hydroxyl radical formation in organic-metal mixtures[J]. Environmental Science & Technology, 2020, 54(3): 1431-1442.
|
[62] |
WONG J P S, TSAGKARAKI M, TSIODRA I, et al. Effects of atmospheric processing on the oxidative potential of biomass burning organic aerosols[J]. Environmental Science & Technology, 2019, 53(12): 6747-6756.
|
[63] |
PUTHUSSERY J V, ZHANG C, VERMA V. Development and field testing of an online instrument for measuring the real-time oxidative potential of ambient particulate matter based on dithiothreitol assay[J]. Atmospheric Measurement Techniques, 2018, 11(10): 5767-5780. doi: 10.5194/amt-11-5767-2018
|
[64] |
PATEL A, SATISH R, RASTOGI N. Remarkably high oxidative potential of atmospheric PM2.5 coming from a large-scale paddy-residue burning over the northwestern indo-gangetic plain[J]. ACS Earth and Space Chemistry, 2021, 5(9): 2442-2452. doi: 10.1021/acsearthspacechem.1c00125
|
[65] |
CESARI D, MERICO E, GRASSO F M, et al. Source apportionment of PM2.5 and of its oxidative potential in an industrial suburban site in South Italy[J]. Atmosphere, 2019, 10(12): 758. doi: 10.3390/atmos10120758
|
[66] |
CHIRIZZI D, CESARI D, GUASCITO M R, et al. Influence of Saharan dust outbreaks and carbon content on oxidative potential of water-soluble fractions of PM2.5 and PM10[J]. Atmospheric Environment, 2017, 163: 1-8. doi: 10.1016/j.atmosenv.2017.05.021
|
[67] |
VISENTIN M, PAGNONI A, SARTI E, et al. Urban PM2.5 oxidative potential: Importance of chemical species and comparison of two spectrophotometric cell-free assays[J]. Environmental Pollution, 2016, 219: 72-79. doi: 10.1016/j.envpol.2016.09.047
|
[68] |
FANG T, GUO H Y, VERMA V, et al. PM 2.5 water-soluble elements in the southeastern United States: Automated analytical method development, spatiotemporal distributions, source apportionment, and implications for heath studies[J]. Atmospheric Chemistry and Physics, 2015, 15: 11667-11682. doi: 10.5194/acp-15-11667-2015
|
[69] |
JEDYNSKA A, HOEK G, WANG M, et al. Spatial variations and development of land use regression models of oxidative potential in ten European study areas[J]. Atmospheric Environment, 2017, 150: 24-32. doi: 10.1016/j.atmosenv.2016.11.029
|
[70] |
JOVANOVIC M V, SAVIC J Z, SALIMI F, et al. Measurements of oxidative potential of particulate matter at Belgrade tunnel;comparison of BPEAnit, DTT and DCFH assays[J]. International Journal of Environmental Research and Public Health, 2019, 16(24): 4906. doi: 10.3390/ijerph16244906
|
[71] |
NISHITA-HARA C, HIRABAYASHI M, HARA K, et al. Dithiothreitol-measured oxidative potential of size-segregated particulate matter in Fukuoka, Japan: Effects of Asian dust events[J]. GeoHealth, 2019, 3(6): 160-173. doi: 10.1029/2019GH000189
|
[72] |
胡敏, 唐倩, 彭剑飞, 等. 我国大气颗粒物来源及特征分析[J]. 环境与可持续发展, 2011, 36(5): 15-19. doi: 10.3969/j.issn.1673-288X.2011.05.004
HU M, TANG Q, PENG J F, et al. Study on characterization and source apportionment of atmospheric particulate matter in China[J]. Environment and Sustainable Development, 2011, 36(5): 15-19 (in Chinese). doi: 10.3969/j.issn.1673-288X.2011.05.004
|
[73] |
DAELLENBACH K R, UZU G, JIANG J H, et al. Sources of particulate-matter air pollution and its oxidative potential in Europe[J]. Nature, 2020, 587(7834): 414-419. doi: 10.1038/s41586-020-2902-8
|
[74] |
VÖRÖSMARTY M, UZU G, JAFFREZO J, et al. Oxidative potential in rural, suburban and city centre atmospheric environments in central Europe[J]. Atmospheric Chemistry and Physics, 2023, 1206.
|
[75] |
VELD M I ', PANDOLFI M, AMATO F, et al. Discovering oxidative potential (OP) drivers of atmospheric PM10, PM2.5, and PM1 simultaneously in North-Eastern Spain[J]. The Science of the Total Environment, 2023, 857(Pt 2): 159386.
|
[76] |
WANG J Q, JIANG H Y, JIANG H X, et al. Source apportionment of water-soluble oxidative potential in ambient total suspended particulate from Bangkok: Biomass burning versus fossil fuel combustion[J]. Atmospheric Environment, 2020, 235: 117624. doi: 10.1016/j.atmosenv.2020.117624
|
[77] |
MA Y Q, CHENG Y B, QIU X H, et al. Sources and oxidative potential of water-soluble humic-like substances (HULISWS) in fine particulate matter (PM2.5) in Beijing[J]. Atmospheric Chemistry and Physics, 2018, 18(8): 5607-5617. doi: 10.5194/acp-18-5607-2018
|
[78] |
REFEREE M P. Interactive comment on “Reactive oxygen species associated with water-soluble PM2.5 in the southeastern United States: Spatiotemporal trends and source apportionment[J]. Atmospheric Chemistry and Physics, 2014, 14(23): 12915-12930. doi: 10.5194/acp-14-12915-2014
|
[79] |
LIU T, WANG X, DENG W, et al. Secondary organic aerosol formation from photochemical aging of light-duty gasoline vehicle exhausts in a smog chamber[J]. Atmospheric Chemistry and Physics, 2015, 15(15): 9049-9062. doi: 10.5194/acp-15-9049-2015
|
[80] |
MASSIMI L, RISTORINI M, SIMONETTI G, et al. Spatial mapping and size distribution of oxidative potential of particulate matter released by spatially disaggregated sources[J]. Environmental Pollution, 2020, 266: 115271. doi: 10.1016/j.envpol.2020.115271
|
[81] |
GUO H B, JIN L, HUANG S J. Effect of PM characterization on PM oxidative potential by acellular assays: A review[J]. Reviews on Environmental Health, 2020, 35(4): 461-470. doi: 10.1515/reveh-2020-0003
|
[82] |
PIETROGRANDE, RUSSO, ZAGATTI. Review of PM oxidative potential measured with acellular assays in urban and rural sites across Italy[J]. Atmosphere, 2019, 10(10): 626. doi: 10.3390/atmos10100626
|