[1] |
况新亮, 刘垂祥, 熊朋. 锂离子电池产业分析及市场展望[J]. 无机盐工业, 2022, 54(8): 12-19.
|
[2] |
SWAIN B. Recovery and recycling of lithium: A review[J]. Separation and Purification Technology, 2017, 172: 388-403. doi: 10.1016/j.seppur.2016.08.031
|
[3] |
朱坤, 刘恺华, 黄张团, 等. 废旧锂离子电池中钴的回收[J]. 环境工程学报, 2018, 12(9): 2650-2657.
|
[4] |
孙静, 江镇宇, 于冠群, 等. 微波技术在锂离子电池正极材料高效回收再利用中的研究进展[J]. 环境工程学报, 2021, 15(7): 2191-2217.
|
[5] |
冯天意, 崔鹏媛, 林艳, 等. 废旧锂电池正极材料浸出液中锰、钴的萃取分离[J]. 环境工程学报, 2023, 17(10): 3367-3373.
|
[6] |
蔡乐, 王继芬, 高瑞. 废旧三元锂电池正极材料的金属浸出[J]. 环境工程学报, 2018, 12(6): 1833-1842.
|
[7] |
HARPER G, SOMMERVILLE R, KENDRICK E, et al. Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019, 575: 75-86. doi: 10.1038/s41586-019-1682-5
|
[8] |
ZHANG G W, LIU Z M, YUAN X, et al. Recycling of valuable metals from spent cathode material by organic pyrolysis combined with in-situ thermal reduction[J]. Journal of Hazardous Materials, 2022, 430: 128374. doi: 10.1016/j.jhazmat.2022.128374
|
[9] |
YU J D, HE Y Q, QU L L, et al. Exploring the critical role of grinding modification on the flotation recovery of electrode materials from spent lithium ion batteries[J]. Journal of Cleaner Production, 2020, 274: 123066. doi: 10.1016/j.jclepro.2020.123066
|
[10] |
MA X T, CHEN M Y, CHEN B, et al. High-performance graphite recovered from spent lithium-ion batteries[J]. Acs Sustainable Chemistry & Engineering, 2019, 7: 19732-19738.
|
[11] |
WANG H R, HUANG Y S, HUANG C F, et al. Reclaiming graphite from spent lithium ion batteries ecologically and economically[J]. Electrochimica Acta, 2019, 313: 423-431. doi: 10.1016/j.electacta.2019.05.050
|
[12] |
HE S, WILSON B P, LUNDSTROM M, et al. Clean and efficient recovery of spent LiCoO2 cathode material: water-leaching characteristics and low-temperature ammonium sulfate calcination mechanisms[J]. Journal of Cleaner Production, 2020, 268: 1222099.
|
[13] |
MAROUFI S, NEKOUEI R K, HOSSAIN R, et al. Recovery of rare earth (i. e. , La, Ce, Nd, and Pr) oxides from end-of-life ni-mh battery via thermal isolation[J]. Acs Sustainable Chemistry & Engineering, 2018, 6: 11811-11818.
|
[14] |
李强, 陈若葵, 谭群英, 等. 从废旧锂电池处理废渣中硫酸浸出锂的动力学研究[J]. 矿冶工程, 2018, 38(5): 103-106.
|
[15] |
SUN J P, LIANG D D, MENG X C, et al. Recent advances in lithium extraction using electrode materials of li-ion battery from brine/seawater[J]. Processes, 2022, 10.
|
[16] |
ZHAO X Y, YANG H C, WANG Y F, et al. Review on the electrochemical extraction of lithium from seawater/brine[J]. Journal of Electroanalytical Chemistry, 2019, 850: 113389. doi: 10.1016/j.jelechem.2019.113389
|
[17] |
SHU J C, LIU R L, LIU Z H, et al. Enhanced extraction of manganese from electrolytic manganese residue by electrochemical[J]. Journal of Electroanalytical Chemistry, 2016, 780: 32-37. doi: 10.1016/j.jelechem.2016.08.033
|
[18] |
THAKARE J, MASUD J. Low temperature electrochemical extraction of rare earth metals from lignite coal: an environmentally benign and energy efficient method[J]. Journal of the Electrochemical Society, 2022, 169(2): 1-7.
|
[19] |
徐剑, 毛江鸿, 张程, 等. 混凝土拌合物中氯离子的电化学提取方法及效果[J]. 低温建筑技术, 2022, 44(3): 149-153.
|
[20] |
郭京龙. 锂离子电池石墨负极资源化及再生利用研究[D]. 武汉: 江汉大学, 2020.
|
[21] |
FERREIRA D A, ZIMMER PRADOS L M, MAJUSTE D, et al. Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent li-ion batteries[J]. Journal of Power Sources, 2009, 187: 238-246. doi: 10.1016/j.jpowsour.2008.10.077
|
[22] |
黄子卿. 离子水化[J]. 化学通报, 1961(12): 1-9.
|
[23] |
李荻. 电化学原理[M]. 北京: 北京航空航天大学出版社, 2008: 13-15.
|
[24] |
喻济兵. 锂离子电池用α-Al2O3纳米材料技术应用与发展[J]. 船电技术, 2016, 36(11): 19-22.
|
[25] |
高洋. 失效锂离子电池负极材料回收及高值化利用基础研究[D]. 北京: 北京科技大学, 2023.
|