[1] |
NSENGA KUMWIMBA M, LOTTI T, ŞENEL E, et al. Anammox-based processes: How far have we come and what work remains? A review by bibliometric analysis[J]. Chemosphere, 2020, 238: 124627. doi: 10.1016/j.chemosphere.2019.124627
|
[2] |
JIANG H, YANG P, WANG Z, et al. Novel insights into overcoming nitrite oxidation bacteria acclimatization problem in treatment of high-ammonia wastewater through partial nitrification[J]. Bioresource Technology, 2021, 336: 125254. doi: 10.1016/j.biortech.2021.125254
|
[3] |
LIU Y C, ZHU Y L, WU D S, et al. Effect of free nitrous acid on nitritation process: Microbial community, inhibitory kinetics, and functional biomarker[J]. Bioresource Technology, 2023, 371: 128595. doi: 10.1016/j.biortech.2023.128595
|
[4] |
ZHANG W K, YU D S, ZHANG J H, et al. Start-up of mainstream anammox process through inoculating nitrification sludge and anammox biofilm: Shift in nitrogen transformation and microorganisms[J]. Bioresource Technology, 2022, 347: 126728. doi: 10.1016/j.biortech.2022.126728
|
[5] |
WANG H, YANG M, LIU K, et al. Insights into the synergy between functional microbes and dissolved oxygen partition in the single-stage partial nitritation-anammox granules system[J]. Bioresource Technology, 2022, 347: 126364. doi: 10.1016/j.biortech.2021.126364
|
[6] |
CARANTO J D, LANCASTER K M. Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(31): 8217-8222.
|
[7] |
LANCASTER K M, CARANTO J D, MAJER S H, et al. Alternative bioenergy: Updates to and challenges in nitrification metalloenzymology[J]. Joule, 2018, 2(3): 421-441. doi: 10.1016/j.joule.2018.01.018
|
[8] |
STEIN L Y. Insights into the physiology of ammonia-oxidizing microorganisms[J]. Current Opinion in Chemical Biology, 2019, 49: 9-15. doi: 10.1016/j.cbpa.2018.09.003
|
[9] |
SOLER-JOFRA A, PÉREZ J, van LOOSDRECHT M C M. Hydroxylamine and the nitrogen cycle: A review[J]. Water Research, 2021, 190: 116723. doi: 10.1016/j.watres.2020.116723
|
[10] |
SUZUKI I, DULAR U, KWOK S C. Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas europaea cells and extracts[J]. Journal of bacteriology, 1974, 120(1): 556-558. doi: 10.1128/jb.120.1.556-558.1974
|
[11] |
彭永臻, 孙洪伟, 杨庆. 短程硝化的生化机理及其动力学[J]. 环境科学学报, 2008, 28(5): 817-824.
PENG Y Z, SUN H W, YANG Q. The biochemical reaction mechanism and kinetics of partial nitrification[J]. Acta Scientiae Circumstantiae, 2008, 28(5): 817-824 (in Chinese).
|
[12] |
YU R, KAMPSCHREUR M J, van LOOSDRECHT M C M, et al. Mechanisms and specific directionality of autotrophic nitrous oxide and nitric oxide generation during transient anoxia[J]. Environmental Science & Technology, 2010, 44(4): 1313-1319.
|
[13] |
NI B J, PENG L, LAW Y, et al. Modeling of nitrous oxide production by autotrophic ammonia-oxidizing bacteria with multiple production pathways[J]. Environmental Science & Technology, 2014, 48(7): 3916-3924.
|
[14] |
HINK L, LYCUS P, GUBRY-RANGIN C, et al. Kinetics of NH3-oxidation, NO-turnover, N2O-production and electron flow during oxygen depletion in model bacterial and archaeal ammonia oxidisers[J]. Environmental Microbiology, 2017, 19(12): 4882-4896. doi: 10.1111/1462-2920.13914
|
[15] |
VENTER J C, REMINGTON K, HEIDELBERG J F, et al. Environmental Genome Shotgun Sequencing of the Sargasso Sea[J]. Science, 2004, 304(5667): 66-74. doi: 10.1126/science.1093857
|
[16] |
KÖNNEKE M, BERNHARD A E, deLa TORRE J R, et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon[J]. Nature, 2005, 437: 543-546. doi: 10.1038/nature03911
|
[17] |
CAFFREY J M, BANO N, KALANETRA K, et al. Ammonia oxidation and ammonia-oxidizing bacteria and Archaea from estuaries with differing histories of hypoxia[J]. The ISME Journal, 2007, 1(7): 660-662. doi: 10.1038/ismej.2007.79
|
[18] |
YANG Y C, HERBOLD C W, JUNG M-Y, et al. Survival strategies of ammonia-oxidizing Archaea (AOA) in a full-scale WWTP treating mixed landfill leachate containing copper ions and operating at low-intensity of aeration[J]. Water Research, 2021, 191: 116798. doi: 10.1016/j.watres.2020.116798
|
[19] |
LIU L T, LI S R, HAN J M, et al. A two-step strategy for the rapid enrichment of Nitrosocosmicus-like ammonia-oxidizing thaumarchaea[J]. Frontiers in Microbiology, 2019, 10: 875. doi: 10.3389/fmicb.2019.00875
|
[20] |
JIANG Z, TANG S Y, LIAO Y H, et al. Effect of low temperature on contributions of ammonia oxidizing archaea and bacteria to nitrous oxide in constructed wetlands[J]. Chemosphere, 2023, 313: 137585. doi: 10.1016/j.chemosphere.2022.137585
|
[21] |
AL-AJEEL S, SPASOV E, SAUDER L A, et al. Ammonia-oxidizing archaea and complete ammonia-oxidizing Nitrospira in water treatment systems[J]. Water Research X, 2022, 15: 100131. doi: 10.1016/j.wroa.2022.100131
|
[22] |
PARK J-G, LEE B, HEO T-Y, et al. Metagenomics approach and canonical correspondence analysis of novel nitrifiers and ammonia-oxidizing archaea in full scale anaerobic-anoxic-oxic (A2/O) and oxidation ditch processes[J]. Bioresource Technology, 2021, 319: 124205. doi: 10.1016/j.biortech.2020.124205
|
[23] |
WU L, CHEN X M, WEI W, et al. A critical review on nitrous oxide production by ammonia-oxidizing Archaea[J]. Environmental Science & Technology, 2020, 54(15): 9175-9190.
|
[24] |
REIGSTAD L J, RICHTER A, DAIMS H, et al. Nitrification in terrestrial hot springs of Iceland and Kamchatka[J]. FEMS Microbiology Ecology, 2008, 64(2): 167-174. doi: 10.1111/j.1574-6941.2008.00466.x
|
[25] |
ZHANG C L, YE Q, HUANG Z Y, et al. Global occurrence of archaeal amoA genes in terrestrial hot springs[J]. Applied and Environmental Microbiology, 2008, 74(20): 6417-6426. doi: 10.1128/AEM.00843-08
|
[26] |
ZHAO W H, BI X J, BAI M, et al. Research advances of ammonia oxidation microorganisms in wastewater: Metabolic characteristics, microbial community, influencing factors and process applications[J]. Bioprocess and Biosystems Engineering, 2023, 46(5): 621-633. doi: 10.1007/s00449-023-02866-5
|
[27] |
武文君, 刘秀红, 崔斌, 等. 溶解氧对Anammox滤池内功能菌群及活性的影响[J]. 中国环境科学, 2021, 41(3): 1415-1421.
WU W J, LIU X H, CUI B, et al. Effect of dissolved oxygen on the community and activities of functional bacteria in anammox biofilter[J]. China Environmental Science, 2021, 41(3): 1415-1421 (in Chinese).
|
[28] |
吴军, 张悦, 徐婷, 等. AOB溶解氧亲和力低于NOB条件下序批反应器中NOB淘汰的实现机制[J]. 中国环境科学, 2016, 36(12): 3583-3590.
WU J, ZHANG Y, XU T, et al. Mechanisms of partial nitrification in sequencing batch reactor under the condition of AOB oxygen affinity lower than NOB[J]. China Environmental Science, 2016, 36(12): 3583-3590 (in Chinese).
|
[29] |
杨庆, 杨玉兵, 杨忠启, 等. 溶解氧对短程硝化稳定性及功能菌群的影响[J]. 中国环境科学, 2018, 38(9): 3328-3334.
YANG Q, YANG Y B, YANG Z Q, et al. Effect of dissolved oxygen on the stability and functional microbial communities of the partial nitrification[J]. China Environmental Science, 2018, 38(9): 3328-3334 (in Chinese).
|
[30] |
BLACKBURNE R, YUAN Z G, KELLER J. Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor[J]. Biodegradation, 2008, 19(2): 303-312. doi: 10.1007/s10532-007-9136-4
|
[31] |
WANG L, LI B R, LI Y M, et al. Enhanced biological nitrogen removal under low dissolved oxygen in an anaerobic-anoxic-oxic system: Kinetics, stoichiometry and microbial community[J]. Chemosphere, 2021, 263: 128184. doi: 10.1016/j.chemosphere.2020.128184
|
[32] |
CUI B, YANG Q, LIU X H, et al. The effect of dissolved oxygen concentration on long-term stability of partial nitrification process[J]. Journal of Environmental Sciences, 2020, 90: 343-351. doi: 10.1016/j.jes.2019.12.012
|
[33] |
STRAKA L L, MEINHARDT K A, BOLLMANN A, et al. Affinity informs environmental cooperation between ammonia-oxidizing Archaea (AOA) and anaerobic ammonia-oxidizing (Anammox) bacteria[J]. The ISME Journal, 2019, 13(8): 1997-2004. doi: 10.1038/s41396-019-0408-x
|
[34] |
XIE J H, YAN J, HE H X, et al. Evaluation of the key factors to dominate aerobic ammonia-oxidizing Archaea in wastewater treatment plant[J]. International Biodeterioration & Biodegradation, 2021, 164: 105289.
|
[35] |
QIN W, MEINHARDT K A, MOFFETT J W, et al. Influence of oxygen availability on the activities of ammonia-oxidizing Archaea[J]. Environmental Microbiology Reports, 2017, 9(3): 250-256. doi: 10.1111/1758-2229.12525
|
[36] |
ROY D, McEVOY J, BLONIGEN M, et al. Seasonal variation and ex-situ nitrification activity of ammonia oxidizing Archaea in biofilm based wastewater treatment processes[J]. Bioresource Technology, 2017, 244: 850-859. doi: 10.1016/j.biortech.2017.08.060
|
[37] |
TRIMMER M, CHRONOPOULOU P M, MAANOJA S T, et al. Nitrous oxide as a function of oxygen and archaeal gene abundance in the North Pacific[J]. Nature Communications, 2016, 7: 13451. doi: 10.1038/ncomms13451
|
[38] |
FRAME C H, LAU E, NOLAN E J 4th, et al. Acidification enhances hybrid N2O production associated with aquatic ammonia-oxidizing microorganisms[J]. Frontiers in Microbiology, 2017, 7: 2104.
|
[39] |
WANG Z Y, ZHENG M, HU Z T, et al. Unravelling adaptation of nitrite-oxidizing bacteria in mainstream PN/a process: Mechanisms and counter-strategies[J]. Water Research, 2021, 200: 117239. doi: 10.1016/j.watres.2021.117239
|
[40] |
HUANG S C, ZHU Y C, ZHANG G M, et al. Effects of low-intensity ultrasound on nitrite accumulation and microbial characteristics during partial nitrification[J]. Science of the Total Environment, 2020, 705: 135985. doi: 10.1016/j.scitotenv.2019.135985
|
[41] |
LIU W L, YANG Q, MA B, et al. Rapid achievement of nitritation using aerobic starvation[J]. Environmental Science & Technology, 2017, 51(7): 4001-4008.
|
[42] |
WANG Z Y, ZHENG M, DUAN H R, et al. A 20-year journey of partial nitritation and anammox (PN/a): From sidestream toward mainstream[J]. Environmental Science & Technology, 2022, 56(12): 7522-7531.
|
[43] |
YANG Y D, JIANG Y M, LONG Y N, et al. Insights into the mechanism of the deterioration of mainstream partial nitritation/anammox under low residual ammonium[J]. Journal of Environmental Sciences, 2023, 126: 29-39. doi: 10.1016/j.jes.2022.04.005
|
[44] |
HAUSHERR D, NIEDERDORFER R, BÜRGMANN H, et al. Successful mainstream nitritation through NOB inactivation[J]. Science of the Total Environment, 2022, 822: 153546. doi: 10.1016/j.scitotenv.2022.153546
|
[45] |
COSTA E, PÉREZ J, KREFT J U. Why is metabolic labour divided in nitrification?[J]. Trends in Microbiology, 2006, 14(5): 213-219. doi: 10.1016/j.tim.2006.03.006
|
[46] |
DAIMS H, LEBEDEVA E V, PJEVAC P, et al. Complete nitrification by Nitrospira bacteria[J]. Nature, 2015, 528: 504-509. doi: 10.1038/nature16461
|
[47] |
van KESSEL M A H J, SPETH D R, ALBERTSEN M, et al. Complete nitrification by a single microorganism[J]. Nature, 2015, 528: 555-559. doi: 10.1038/nature16459
|
[48] |
PALOMO A, PEDERSEN A G, FOWLER S J, et al. Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira[J]. The ISME Journal, 2018, 12(7): 1779-1793. doi: 10.1038/s41396-018-0083-3
|
[49] |
ROOTS P, WANG Y B, ROSENTHAL A F, et al. Comammox Nitrospira are the dominant ammonia oxidizers in a mainstream low dissolved oxygen nitrification reactor[J]. Water Research, 2019, 157: 396-405. doi: 10.1016/j.watres.2019.03.060
|
[50] |
BEACH N K, NOGUERA D R. Design and assessment of species-level qPCR primers targeting comammox[J]. Frontiers in Microbiology, 2019, 10: 36. doi: 10.3389/fmicb.2019.00036
|
[51] |
SAKOULA D, KOCH H, FRANK J, et al. Enrichment and physiological characterization of a novel comammox Nitrospira indicates ammonium inhibition of complete nitrification[J]. The ISME Journal, 2021, 15: 1010-1024. doi: 10.1038/s41396-020-00827-4
|
[52] |
KITS K D, JUNG M Y, VIERHEILIG J, et al. Low yield and abiotic origin of N2O formed by the complete nitrifier Nitrospira inopinata[J]. Nature Communications, 2019, 10: 1836. doi: 10.1038/s41467-019-09790-x
|
[53] |
LIU G Q, WANG J M. Long-term low DO enriches and shifts nitrifier community in activated sludge[J]. Environmental Science & Technology, 2013, 47(10): 5109-5117.
|
[54] |
HANAKI K, WANTAWIN C, OHGAKI S. Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended-growth reactor[J]. Water Research, 1990, 24(3): 297-302. doi: 10.1016/0043-1354(90)90004-P
|
[55] |
MA Y, PENG Y Z, WANG S Y, et al. Achieving nitrogen removal via nitrite in a pilot-scale continuous pre-denitrification plant[J]. Water Research, 2009, 43(3): 563-572. doi: 10.1016/j.watres.2008.08.025
|
[56] |
杜贺, 李冬, 周川, 等. 控制低溶解氧实现亚硝化的稳定性[J]. 环境科学, 2010, 31(10): 2365-2369.
DU H, LI D, ZHOU C, et al. Achieving the stability of nitrosation under low DO concentration[J]. Environmental Science, 2010, 31(10): 2365-2369 (in Chinese).
|
[57] |
ZHENG M, LI H J, DUAN H R, et al. One-year stable pilot-scale operation demonstrates high flexibility of mainstream anammox application[J]. Water Research X, 2023, 19: 100166. doi: 10.1016/j.wroa.2023.100166
|
[58] |
刘若男, 赵博玮, 岳秀萍. 曝气量对微生物燃料电池脱氮的影响[J]. 环境化学, 2018, 37(6): 1317-1326. doi: 10.7524/j.issn.0254-6108.2017091001
LIU R N, ZHAO B W, YUE X P. Effect of aeration rate on nitrogen removal by microbial fuel cells[J]. Environmental Chemistry, 2018, 37(6): 1317-1326 (in Chinese). doi: 10.7524/j.issn.0254-6108.2017091001
|
[59] |
杨玉兵, 杨庆, 李洋, 等. 基于同位素技术的短程硝化过程N2O产生途径[J]. 环境科学, 2018, 39(11): 5051-5057.
YANG Y B, YANG Q, LI Y, et al. N2O production pathways in partial nitrification based on isotope technology[J]. Environmental Science, 2018, 39(11): 5051-5057 (in Chinese).
|
[60] |
LU J, ZHANG Y X, WU J, et al. Nitrogen removal in recirculating aquaculture water with high dissolved oxygen conditions using the simultaneous partial nitrification, anammox and denitrification system[J]. Bioresource Technology, 2020, 305: 123037. doi: 10.1016/j.biortech.2020.123037
|
[61] |
CHEN Z G, WANG X J, CHEN X Z, et al. Nitrogen removal via nitritation pathway for low-strength ammonium wastewater by adsorption, biological desorption and denitrification[J]. Bioresource Technology, 2018, 267: 541-549. doi: 10.1016/j.biortech.2018.07.084
|
[62] |
杨庆, 杨玉兵, 刘秀红, 等. 不同溶解氧环境下氨氧化菌的氧半饱和常数比较[J]. 中国给水排水, 2017, 33(23): 22-26.
YANG Q, YANG Y B, LIU X H, et al. Oxygen half-saturation constants of ammonia oxidizing bacteria (AOB) in nitrification sludge under different dissolved oxygen[J]. China Water & Wastewater, 2017, 33(23): 22-26 (in Chinese).
|
[63] |
JIANG H, PENG Y Z, LI X Y, et al. Advanced nitrogen removal from mature landfill leachate via partial nitrification-Anammox biofilm reactor (PNABR) driven by high dissolved oxygen (DO): Protection mechanism of aerobic biofilm[J]. Bioresource Technology, 2020, 306: 123119. doi: 10.1016/j.biortech.2020.123119
|
[64] |
CUI H H, ZHANG L, PENG Y Z, et al. Achieving stable nitritation for mainstream anammox by combining nitrite exposure inhibition with high DO reactivation[J]. Journal of Water Process Engineering, 2022, 46: 102589. doi: 10.1016/j.jwpe.2022.102589
|
[65] |
WANG H, GONG H, DAI X H, et al. Metagenomics reveals the microbial community and functional metabolism variation in the partial nitritation-anammox process: From collapse to recovery[J]. Journal of Environmental Sciences, 2024, 135: 210-221. doi: 10.1016/j.jes.2023.01.002
|
[66] |
MA Y J, PISCEDDA A, deLa C VERAS A, et al. Intermittent aeration to regulate microbial activities in membrane-aerated biofilm reactors: Energy-efficient nitrogen removal and low nitrous oxide emission[J]. Chemical Engineering Journal, 2022, 433: 133630. doi: 10.1016/j.cej.2021.133630
|
[67] |
LI J P, ELLIOTT D, NIELSEN M, et al. Long-term partial nitrification in an intermittently aerated sequencing batch reactor (SBR) treating ammonium-rich wastewater under controlled oxygen-limited conditions[J]. Biochemical Engineering Journal, 2011, 55(3): 215-222. doi: 10.1016/j.bej.2011.05.002
|
[68] |
HASSAN M O, GANI K M, KUMARI S, et al. Start-up of partial nitrification by intermittent aeration, pH shocks and sulfide addition in a sequential batch reactor[J]. Journal of Chemical Technology & Biotechnology, 2022, 97(8): 2186-2195.
|
[69] |
周梦雨, 彭党聪, 韩芸, 等. 间歇曝气对部分硝化-厌氧氨氧化处理氨氮废水的影响[J]. 中国环境科学, 2022, 42(3): 1120-1127.
ZHOU M Y, PENG D C, HAN Y, et al. Partial nitrification-anaerobic ammonia oxidation for the treatment of moderately concentrated ammonia-nitrogen wastewater: Effect of intermittent aeration on nitrogen removal performance[J]. China Environmental Science, 2022, 42(3): 1120-1127 (in Chinese).
|
[70] |
曾薇, 张悦, 李磊, 等. 生活污水常温处理系统中AOB与NOB竞争优势的调控[J]. 环境科学, 2009, 30(5): 1430-1436.
ZENG W, ZHANG Y, LI L, et al. Competition and optimization of AOB and NOB for domestic wastewater treatment at normal temperatures[J]. Environmental Science, 2009, 30(5): 1430-1436 (in Chinese).
|
[71] |
蒋轶锋, 陈浚, 王宝贞, 等. 间歇曝气对硝化菌生长动力学影响及NO2-积累机制[J]. 环境科学, 2009, 30(1): 85-90.
JIANG Y F, CHEN J, WANG B Z, et al. Effect of intermittent aeration on growth kinetics of nitrifiers and mechanism for NO2- accumulation[J]. Environmental Science, 2009, 30(1): 85-90 (in Chinese) .
|
[72] |
XU Z Z, ZHANG L, GAO X J, et al. Optimization of the intermittent aeration to improve the stability and flexibility of a mainstream hybrid partial nitrification-anammox system[J]. Chemosphere, 2020, 261: 127670. doi: 10.1016/j.chemosphere.2020.127670
|
[73] |
KORNAROS M, DOKIANAKIS S N, LYBERATOS G. Partial nitrification/denitrification can be attributed to the slow response of nitrite oxidizing bacteria to periodic anoxic disturbances[J]. Environmental Science & Technology, 2010, 44(19): 7245-7253.
|
[74] |
刘宏, 南彦斌, 李慧, 等. 间歇曝气模式下曝气量对短程硝化恢复的影响[J]. 环境科学, 2018, 39(2): 865-871.
LIU H, NAN Y B, LI H, et al. Effect of aeration rate on shortcut nitrification recovery in intermittent aeration mode[J]. Environmental Science, 2018, 39(2): 865-871 (in Chinese).
|
[75] |
SUN Y P, GUAN Y T, PAN M, et al. Enhanced biological nitrogen removal and N2O emission characteristics of the intermittent aeration activated sludge process[J]. Reviews in Environmental Science and Bio/Technology, 2017, 16(4): 761-780. doi: 10.1007/s11157-017-9444-z
|