[1] |
邱沪生, 蔡天明, 陈立伟. 催化湿式过氧化法处理蒽醌-2-磺酸钠废水[J]. 环境工程学报, 2014, 8(4): 1497-502.
|
[2] |
ROUTOULA E, PATWARDHAN S V. Degradation of anthraquinone dyes from effluents: A review focusing on enzymatic dye degradation with industrial potential[J]. Environmental Science & Technology, 2020, 54(2): 647-664.
|
[3] |
YUAN Y, XING G, GARG S, et al. Mechanistic insights into the catalytic ozonation process using iron oxide-impregnated activated carbon[J]. Water Research, 2020, 177: 115785. doi: 10.1016/j.watres.2020.115785
|
[4] |
HUANG K Z, ZHANG H. Direct electron-transfer-based peroxymonosulfate activation by iron-doped manganese oxide (δ-MnO2) and the development of galvanic oxidation processes (GOPs)[J]. Environmental Science & Technology, 2019, 53(21): 12610-12620.
|
[5] |
NAWAZ F, CAO H, XIE Y, et al. Selection of active phase of MnO2 for catalytic ozonation of 4-nitrophenol[J]. Chemosphere, 2017, 168: 1457-1466. doi: 10.1016/j.chemosphere.2016.11.138
|
[6] |
WANG F, DAI H, DENG J, et al. Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: Highly effective catalysts for the removal of toluene[J]. Environmental Science & Technology, 2012, 46(7): 4034-4041.
|
[7] |
DEHESTANIATHAR S, KHAJELAKZAY M, RAMEZANI-FARANI M, et al. Modified diatomite-supported CuO–TiO2 composite: Preparation, characterization and catalytic co oxidation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 58: 252-258. doi: 10.1016/j.jtice.2015.05.030
|
[8] |
TAN Y, LI C, SUN Z, et al. Natural diatomite mediated spherically monodispersed CoFe2O4 nanoparticles for efficient catalytic oxidation of bisphenol a through activating peroxymonosulfate[J]. Chemical Engineering Journal, 2020, 388: 124386. doi: 10.1016/j.cej.2020.124386
|
[9] |
韩琳, 陈宋辉, 于鹏, 等. 磁性硅藻土的制备及其性能[J]. 环境工程学报, 2016, 10(6): 2987-2991. doi: 10.12030/j.cjee.201501046
|
[10] |
XIAO X, ZHANG Z, WU Y, et al. Ultrahigh‐loading manganese‐based electrodes for aqueous batteries via polymorph tuning[J]. Advanced Materials, 2023, 35(33): 2211555. doi: 10.1002/adma.202211555
|
[11] |
姚宏嘉, 陈星, 张玉, 等. 生物炭负载γ-MnO2纳米复合材料活化过一硫酸盐降解对氯苯酚的性能及机理[J]. 环境工程学报, 2022, 16(6): 1833-1844. doi: 10.12030/j.cjee.202201078
|
[12] |
SHEN S, ZHOU X, ZHAO Q, et al. Understanding the nonradical activation of peroxymonosulfate by different crystallographic MnO2: The pivotal role of MnIII content on the surface[J]. Journal of Hazardous Materials, 2022, 439: 129613. doi: 10.1016/j.jhazmat.2022.129613
|
[13] |
HUANG J, DAI Y, SINGEWALD K, et al. Effects of MnO2 of different structures on activation of peroxymonosulfate for bisphenol a degradation under acidic conditions[J]. Chemical Engineering Journal, 2019, 370: 906-915. doi: 10.1016/j.cej.2019.03.238
|
[14] |
WANG Y, ZHONG W, ZHANG S, et al. Pearl necklace-like comn-based nanostructures derived from metal-organic frames for enhanced electromagnetic wave absorption[J]. Carbon, 2022, 188: 254-264. doi: 10.1016/j.carbon.2021.12.030
|
[15] |
WU S, WANG C Z, JIN Y Q, et al. Green synthesis of reusable super-paramagnetic diatomite for aqueous nickel (II) removal[J]. Journal of Colloid and Interface Science, 2021, 582: 1179-1190. doi: 10.1016/j.jcis.2020.08.119
|
[16] |
QI X, XIE F. Promotion effects of potassium permanganate on removal of Pb(II), Ni(II) and Cd(II) from hydrous manganese dioxide[J]. Chemical Engineering Journal, 2018, 351: 22-30. doi: 10.1016/j.cej.2018.06.042
|
[17] |
HU P, SU H, CHEN Z, et al. Selective degradation of organic pollutants using an efficient metal-free catalyst derived from carbonized polypyrrole via peroxymonosulfate activation[J]. Environmental Science & Technology, 2017, 51(19): 11288-11296.
|
[18] |
WANG Y, INDRAWIRAWAN S, DUAN X, et al. New insights into heterogeneous generation and evolution processes of sulfate radicals for phenol degradation over one-dimensional α-MnO2 nanostructures[J]. Chemical Engineering Journal, 2015, 266: 12-20. doi: 10.1016/j.cej.2014.12.066
|
[19] |
RUIZ-CAMACHO B, BALTAZAR VERA J C, MEDINA-RAMíREZ A, et al. Eis analysis of oxygen reduction reaction of pt supported on different substrates[J]. International Journal of Hydrogen Energy, 2017, 42(51): 30364-30373. doi: 10.1016/j.ijhydene.2017.08.087
|
[20] |
SINGH R K, DEVIVARAPRASAD R, KAR T, et al. Electrochemical impedance spectroscopy of oxygen reduction reaction (ORR) in a rotating disk electrode configuration: Effect of ionomer content and carbon-support[J]. Journal of the Electrochemical Society, 2015, 162(6): F489-F498. doi: 10.1149/2.0141506jes
|
[21] |
SAPUTRA E, MUHAMMAD S, SUN H, et al. Different crystallographic one-dimensional MnO2 nanomaterials and their superior performance in catalytic phenol degradation[J]. Environmental Science & Technology, 2013, 47(11): 5882-5887.
|
[22] |
MA J, ZHANG S, DUAN X, et al. Catalytic oxidation of sulfachloropyridazine by MnO2: Effects of crystalline phase and peroxide oxidants[J]. Chemosphere, 2021, 267: 129287. doi: 10.1016/j.chemosphere.2020.129287
|
[23] |
何锦垚, 魏健, 张嘉雯, 等. 臭氧催化氧化-BAF组合工艺深度处理抗生素制药废水[J]. 环境工程学报, 2019, 13(10): 2385-2392. doi: 10.12030/j.cjee.201902043
|
[24] |
BENITEZ F J, ACERO J L, REAL F J, et al. Ozonation of benzotriazole and methylindole: Kinetic modeling, identification of intermediates and reaction mechanisms[J]. Journal of Hazardous Materials, 2015, 282: 224-232. doi: 10.1016/j.jhazmat.2014.05.085
|
[25] |
王业耀 王占生. 影响臭氧化过程的水质指标[J]. 中国给水排水, 1996(6): 29-31. doi: 10.3321/j.issn:1000-4602.1996.06.010
|
[26] |
CHEN X, DENG F, LIU X, et al. Hydrothermal synthesis of MnO2/Fe(0) composites from li-ion battery cathodes for destructing sulfadiazine by photo-fenton process[J]. Science of the Total Environment, 2021, 774: 145776. doi: 10.1016/j.scitotenv.2021.145776
|
[27] |
WANG H, GUO W, LIU B, et al. Edge-nitrogenated biochar for efficient peroxydisulfate activation: An electron transfer mechanism[J]. Water Research, 2019, 160: 405-414. doi: 10.1016/j.watres.2019.05.059
|
[28] |
LUO M, ZHOU H, ZHOU P, et al. Insights into the role of in-situ and ex-situ hydrogen peroxide for enhanced ferrate(VI) towards oxidation of organic contaminants[J]. Water Research, 2021, 203: 117584.
|
[29] |
ZHAO Z, ZHOU W, LIN D, et al. Construction of dual active sites on diatomic metal (FeCo−N/C-x) catalysts for enhanced fenton-like catalysis[J]. Applied Catalysis B: Environmental, 2022, 309: 121256. doi: 10.1016/j.apcatb.2022.121256
|
[30] |
WANG Y, DUAN X, XIE Y, et al. Nanocarbon-based catalytic ozonation for aqueous oxidation: Engineering defects for active sites and tunable reaction pathways[J]. ACS Catalysis, 2020, 10(22): 13383-13414. doi: 10.1021/acscatal.0c04232
|
[31] |
ZHOU C, ZHOU P, SUN M, et al. Nitrogen-doped carbon nanotubes enhanced fenton chemistry: Role of near-free iron(Ⅲ) for sustainable iron(Ⅲ)/iron(II) cycles[J]. Water Research, 2022, 210: 117984. doi: 10.1016/j.watres.2021.117984
|
[32] |
XU L, FU B, SUN Y, et al. Degradation of organic pollutants by Fe/N co-doped biochar via peroxymonosulfate activation: Synthesis, performance, mechanism and its potential for practical application[J]. Chemical Engineering Journal, 2020, 400: 125870. doi: 10.1016/j.cej.2020.125870
|
[33] |
SONG Z, ZHANG Y, LIU C, et al. Insight into oh and O2− formation in heterogeneous catalytic ozonation by delocalized electrons and surface oxygen-containing functional groups in layered-structure nanocarbons[J]. Chemical Engineering Journal, 2019, 357: 655-666. doi: 10.1016/j.cej.2018.09.182
|
[34] |
ZHANG Y, JI H, LIU W, et al. Synchronous degradation of aqueous benzotriazole and bromate reduction in catalytic ozonation: Effect of matrix factor, degradation mechanism and application strategy in water treatment[J]. Science of the Total Environment, 2020, 727: 138696. doi: 10.1016/j.scitotenv.2020.138696
|
[35] |
OUYANG C, WEI K, HUANG X, et al. Bifunctional fe for induced graphitization and catalytic ozonation based on a Fe/N-Doped carbon–Al2O3 framework: Theoretical calculations guided catalyst design and optimization[J]. Environmental Science & Technology, 2021, 55(16): 11236-11244.
|
[36] |
WANG D, HE Y, CHEN Y, et al. Electron transfer enhancing the Mn(II)/Mn(Ⅲ) cycle in MnO/CN towards catalytic ozonation of atrazine via a synergistic effect between MnO and CN[J]. Water Research, 2023, 230: 119574. doi: 10.1016/j.watres.2023.119574
|