[1] FURTULA V, OSACHOFF H, DERKSEN G, et al. Inorganic nitrogen, sterols and bacterial source tracking as tools to characterize water quality and possible contamination sources in surface water[J]. Water Research, 2012, 46(4): 1079-1092. doi: 10.1016/j.watres.2011.12.002
[2] 郑晓英, 乔露露, 王慰, 等. 碳源对反硝化生物滤池运行及微生物种群的影响[J]. 环境工程学报, 2018, 12(5): 1434-1442. doi: 10.12030/j.cjee.201710046
[3] 吴娟娟, 卞建民, 万罕立, 等. 松嫩平原地下水氮污染健康风险评估[J]. 中国环境科学, 2019, 39(8): 3493-3500. doi: 10.3969/j.issn.1000-6923.2019.08.044
[4] YAN Z, CHEN D, QIU Y, et al. Performance and mechanism of pilot-scale carbon fibers enhanced ecological floating beds for urban tail water treatment in optimized ecological floating beds water surface coverage[J]. Bioresource Technology, 2024, 393: 130095. doi: 10.1016/j.biortech.2023.130095
[5] SUN S P, NÀCHER C P I, MERKEY B, et al. Effective biological nitrogen removal treatment processes for domestic wastewaters with low C/N ratios: A review[J]. Environmental Engineering Science, 2010, 27(2): 111-126. doi: 10.1089/ees.2009.0100
[6] FU X, HOU R, YANG P, et al. Application of external carbon source in heterotrophic denitrification of domestic sewage: A review[J]. Science of the Total Environment, 2022, 817: 153061. doi: 10.1016/j.scitotenv.2022.153061
[7] ZOU L, ZHOU M, LUO Z, et al. Selection and synthesization of multi–carbon source composites to enhance simultaneous nitrification–denitrification in treating low C/N wastewater[J]. Chemosphere, 2022, 288: 132567. doi: 10.1016/j.chemosphere.2021.132567
[8] 沈秋实, 吉芳英, 魏嘉志, 等. A~2O缺氧池添加天然碳源玉米芯的脱氮特征[J]. 中国环境科学, 2022, 42(4): 1635-1642. doi: 10.3969/j.issn.1000-6923.2022.04.017
[9] 邵留, 徐祖信, 王晟, 等. 新型反硝化固体碳源释碳性能研究[J]. 环境科学, 2011, 32(8): 2323-2327.
[10] 张辉鹏, 李思博, 张超杰, 等. 以可生物降解固体为碳源的城市污水厂尾水反硝化脱氮研究[J]. 环境工程, 2016, 34(7): 11-15.
[11] 何强, 胡书山, 向泽毅, 等. 垂直流人工湿地系统净化污水厂尾水脱氮效果[J]. 中国环境科学, 2023, 43(8): 3956-3965. doi: 10.3969/j.issn.1000-6923.2023.08.011
[12] ZHANG F, MA C, HUANG X, et al. Research progress in solid carbon source–based denitrification technologies for different target water bodies[J]. Science of the Total Environment, 2021, 782: 146669. doi: 10.1016/j.scitotenv.2021.146669
[13] YANG Z, YANG L, WEI C, et al. Enhanced nitrogen removal using solid carbon source in constructed wetland with limited aeration[J]. Bioresource Technology, 2018, 248: 98-103. doi: 10.1016/j.biortech.2017.07.188
[14] XIONG R, YU X, YU L, et al. Biological denitrification using polycaprolactone-peanut shell as slow-release carbon source treating drainage of municipal WWTP[J]. Chemosphere, 2019, 235: 434-439. doi: 10.1016/j.chemosphere.2019.06.198
[15] 陈佳伟, 许晓毅, 时和敏, 等. 基于D-最优混料设计的复合缓释碳源填料制备及其性能分析[J]. 环境污染与防治, 2021, 43(6): 718-724.
[16] 周蜜. 新型多碳源缓释复合材料的制备及其强化低C/N污水脱氮性能的研究[D]. 重庆: 重庆大学, 2021.
[17] 刘欢, 陈旺, 谭森文, 等. 不动杆菌Acinetobacter sp. TAC-1利用聚(3-羟基丁酸酯-co-3-羟基戊酸酯)的碳代谢机理[J]. 生物工程学报, 2023, 39(11): 4663-4681.
[18] ZHOU R, ZHANG M, LI J, et al. Optimization of preparation conditions for biochar derived from water hyacinth by using response surface methodology (RSM) and its application in Pb2+ removal[J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104198. doi: 10.1016/j.jece.2020.104198
[19] DEHGHANI M H, DEHGHAN A, NAJAFPOOR A. Removing reactive red 120 and 196 using chitosan/zeolite composite from aqueous solutions: Kinetics, isotherms, and process optimization[J]. Journal of Industrial and Engineering Chemistry, 2017, 51: 185-195. doi: 10.1016/j.jiec.2017.03.001
[20] 凌宇, 闫国凯, 王海燕, 等. 6种农业废弃物初期碳源及溶解性有机物释放机制[J]. 环境科学, 2021, 42(05): 2422-2431.
[21] 龚桂胜, 刘景勃, 钟玉鹏, 等. 聚乙烯醇水凝胶自修复性能[J]. 化工进展, 2016, 35(8): 2507-2512.
[22] 张尚文, DANDAN H, ZONGXIAN D, et al. Fabrication and characterization of one interpenetrating network hydrogel based on sodium alginate and polyvinyl alcohol[J]. Journal of Wuhan University of Technology(Materials Science), 2019, 34(3): 744-751.
[23] 高建军. 新型缓释碳源填料的制备及其强化BAF脱氮效能的研究[D]. 兰州: 兰州交通大学, 2021.
[24] 孙盼, 黄福珍, 余洋, 等. 天然固态碳源糙米的释碳优化及其反硝化脱氮性能[J]. 中国给水排水, 2024, 40(1): 15-21.
[25] SUN Q, LIN Y, PING Q, et al. Exploring recycled agricultural wastes for high-rate removal of nitrogen in wastewater: Emphasizing on the investigation of the inner driving force and comparison with conventional liquid carbon sources[J]. Water Research, 2022, 226: 119292. doi: 10.1016/j.watres.2022.119292
[26] PEPPAS N A, SAHLIN J J. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation[J]. International Journal of Pharmaceutics, 1989, 57(2): 169-172. doi: 10.1016/0378-5173(89)90306-2
[27] ZHANG K, ZHUANG D, YANG J, et al. Performance on horizontal flow and folded plate denitrification bioreactor recycling waste sawdust and municipal sludge for continuously treating simulated agricultural surface runoff[J]. Journal of Cleaner Production, 2021, 316: 128299. doi: 10.1016/j.jclepro.2021.128299
[28] XIONG R, YU X, ZHANG Y, et al. Comparison of agricultural wastes and synthetic macromolecules as solid carbon source in treating low carbon nitrogen wastewater[J]. Science of the Total Environment, 2020, 739: 139885. doi: 10.1016/j.scitotenv.2020.139885
[29] SHEN Z, ZHOU Y, LIU J, et al. Enhanced removal of nitrate using starch/PCL blends as solid carbon source in a constructed wetland[J]. Bioresource Technology, 2015, 175: 239-244. doi: 10.1016/j.biortech.2014.10.006
[30] 鲍文英, 江经纬, 周云, 等. 一株木质纤维素降解菌的筛选及其全基因组分析[J]. 微生物学报, 2016, 56(5): 765-777.
[31] 赵文莉, 郝瑞霞, 王润众, 等. 复合碳源填料反硝化脱氮及微生物群落特性[J]. 中国环境科学, 2015, 35(10): 3003-3009. doi: 10.3969/j.issn.1000-6923.2015.10.017
[32] KHURSHEED A, GAUR R Z, ShARMA M K, et al. Dependence of enhanced biological nitrogen removal on carbon to nitrogen and rbCOD to sbCOD ratios during sewage treatment in sequencing batch reactor[J]. Journal of Cleaner Production, 2018, 171: 1244-1254. doi: 10.1016/j.jclepro.2017.10.055
[33] FU Z, YANG F, AN Y, et al. Characteristics of nitrite and nitrate in situ denitrification in landfill bioreactors[J]. Bioresource Technology, 2009, 100(12): 3015-3021. doi: 10.1016/j.biortech.2008.12.034
[34] ZHANG H, JIANG J, LI M, et al. Biological nitrate removal using a food waste-derived carbon source in synthetic wastewater and real sewage[J]. Journal of Environmental Management, 2016, 166: 407-413. doi: 10.1016/j.jenvman.2015.10.037
[35] 邓时海, 李德生, 卢阳阳, 等. 集成模块系统同步硝化反硝化处理低碳氮比污水的试验[J]. 中国环境科学, 2014, 34(09): 2259-2265.
[36] ZENG L, DAI Y, ZHANG X, et al. Keystone species and niche differentiation promote microbial N, P, and COD removal in pilot scale constructed wetlands treating domestic sewage[J]. Environmental Science & Technology, 2021, 55(18): 12652-12663.
[37] SHAO M Y, GUO L, SHE Z L, et al. Enhancing denitrification efficiency for nitrogen removal using waste sludge alkaline fermentation liquid as external carbon source[J]. Environmental Science and Pollution Research, 2019, 26(5): 4633-4644. doi: 10.1007/s11356-018-3944-4
[38] JIA L, GOU E, LIU H, et al. Exploring utilization of recycled agricultural biomass in constructed wetlands: Characterization of the driving force for high-rate nitrogen removal[J]. Environmental Science & Technology, 2019, 53(3): 1258-1268.
[39] 王静静. 含碳源载体碳源释放规律及反硝化特性研究[D]. 唐山: 河北联合大学, 2013.
[40] 丁绍兰, 樊琼, 王娟娟. 曝气生物滤池多孔释碳填料的研制及其对氨氮废水的处理研究[J]. 环境污染与防治, 2019, 41(2): 139-143.
[41] LUO Z, SHI H, LYU H, et al. Preparation and performance verification of a solid slow-release carbon source material for deep nitrogen removal in urban tailwater[J]. Molecules, 2024, 29(9): 2031. doi: 10.3390/molecules29092031