[1] |
AMANGELSIN Y, SEMENOVA Y, DADAR M, et al. The impact of tetracycline pollution on the aquatic environment and removal strategies[J]. Antibiotics, 2023, 12(3): 440. doi: 10.3390/antibiotics12030440
|
[2] |
CHEN Y R, XIA Y D, LIU Y W, et al. Colorimetric and electrochemical detection platforms for tetracycline based on surface molecularly imprinted polyionic liquid on Mn3O4 nanozyme[J]. Biosensors & Bioelectronics, 2022, 216: 114650.
|
[3] |
李伟明, 鲍艳宇, 周启星. 四环素类抗生素降解途径及其主要降解产物研究进展[J]. 应用生态学报, 2012, 23(8): 2300-2308.
LI W M, BAO Y Y, ZHOU Q X. Degradation pathways and main degradation products of tetracycline antibiotics: Research progress[J]. Chinese Journal of Applied Ecology, 2012, 23(8): 2300-2308 (in Chinese).
|
[4] |
MO M J, WANG X S, YE L Y, et al. A simple paper-based ratiometric luminescent sensor for tetracyclines using copper nanocluster-europium hybrid nanoprobes[J]. Analytica Chimica Acta, 2022, 1190: 339257. doi: 10.1016/j.aca.2021.339257
|
[5] |
黄梦凡, 李敏, 刘娟, 等. 地表水中20种四环素类抗生素及其转化产物的同时检测方法研究和应用[J]. 环境化学, 2024, 43(7): 2194-2205. doi: 10.7524/j.issn.0254-6108.2023020601
HUANG M F, LI M, LIU J, et al. Research and application of simultaneous detection method for 20 tetracyclines and transformation products in surface water[J]. Environmental Chemistry, 2024, 43(7): 2194-2205(in Chinese). doi: 10.7524/j.issn.0254-6108.2023020601
|
[6] |
赵琪. 高效液相色谱质谱联用法在食品中四环素类药物残留检测中的应用[J]. 食品安全导刊, 2022(20): 82-84,88. doi: 10.3969/j.issn.1674-0270.2022.20.spaqdk202220037
ZHAO Q. Application of high performance liquid chromatography coupled with mass spectrometry in the detection of tetracycline residues in food[J]. China Food Safety Magazine, 2022(20): 82-84,88 (in Chinese). doi: 10.3969/j.issn.1674-0270.2022.20.spaqdk202220037
|
[7] |
邓波, 朱卫芳, 周雨璊, 等. 胶体金免疫层析法快速检测肉类中恩诺沙星、四环素、头孢氨苄残留的应用验证研究[J]. 农产品质量与安全, 2023(1): 89-93. doi: 10.3969/j.issn.1674-8255.2023.01.017
DENG B, ZHU W F, ZHOU Y M, et al. Application of colloidal gold immunochromatography for rapid detection of enrofloxacin, tetracycline and cefalexin residues in meat[J]. Quality and Safety of Agro-Products, 2023(1): 89-93 (in Chinese). doi: 10.3969/j.issn.1674-8255.2023.01.017
|
[8] |
陈文静, 李明, 林洪, 等. 生物质衍生荧光碳点高灵敏检测环境水样中四环素[J]. 分析科学学报, 2023, 39(1): 21-26.
CHEN W J, LI M, LIN H, et al. Highly sensitive detection of tetracycline in environmental water samples by biomass-derived fluorescence carbon dots[J]. Journal of Analytical Science, 2023, 39(1): 21-26 (in Chinese).
|
[9] |
杨杰, 杨学山, 马晓彤. 微波法制备荧光碳量子点及其对牛奶中四环素的快速检测[J]. 食品与发酵科技, 2022, 58(5): 111-117,141.
YANG J, YANG X S, MA X T. Microwave method for the preparation of fluorescent carbon quantum dots and their rapid detection of tetracycline in milk[J]. Food and Fermentation Sciences & Technology, 2022, 58(5): 111-117,141 (in Chinese).
|
[10] |
MOHAMMAD-RAZDARI A, GHASEMI-VARNAMKHASTI M, ROSTAMI S, et al. Development of an electrochemical biosensor for impedimetric detection of tetracycline in milk[J]. Journal of Food Science and Technology, 2020, 57(12): 4697-4706. doi: 10.1007/s13197-020-04506-2
|
[11] |
CHEN Y, ZHANG Y, LYU T T, et al. A facile strategy for the synthesis of water-soluble fluorescent nonconjugated polymer dots and their application in tetracycline detection[J]. Journal of Materials Chemistry C, 2019, 7(30): 9241-9247. doi: 10.1039/C9TC02738F
|
[12] |
席书敏, 王丁, 赵仁勇. 基于纳米酶构建比色生物传感器用于总抗氧化能力分析[J]. 河南工业大学学报(自然科学版), 2023, 44(5): 41-50.
XI S M, WANG D, ZHAO R Y. Construction of a colorimetric biosensor based on nanozyme for sensitive detection of total antioxidant capacity[J]. Journal of Henan University of Technology (Natural Science Edition), 2023, 44(5): 41-50 (in Chinese).
|
[13] |
HU D J, JIANG S Z, XIA T H, et al. Enhanced fluorescence sensing of tetracycline with Ti2C quantum dots[J]. Nano Research, 2024, 17: 3180-3188. doi: 10.1007/s12274-023-6134-8
|
[14] |
TANG X M, WANG L S, YE H, et al. Biological matrix-derived carbon quantum dots: Highly selective detection of tetracyclines[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 424: 113653. doi: 10.1016/j.jphotochem.2021.113653
|
[15] |
SHEN L, CHEN J, LI N, et al. Rapid colorimetric sensing of tetracycline antibiotics with in situ growth of gold nanoparticles[J]. Analytica Chimica Acta, 2014, 839: 83-90. doi: 10.1016/j.aca.2014.05.021
|
[16] |
LIU D M, HUANG P C, WU F Y. Highly specific and rapid colorimetric detection of tetracycline in pills and milk based on aptamer-controlled aggregation of silver nanoparticles[J]. Chemistry Africa, 2022, 5(1): 107-114. doi: 10.1007/s42250-021-00286-0
|
[17] |
BORTHAKUR P, DARABDHARA G, DAS M, et al. Solvothermal synthesis of CoS/reduced porous graphene oxide nanocomposite for selective colorimetric detection of Hg(II) ion in aqueous medium[J]. Sensors and Actuators B-Chemical, 2017, 244: 684-692. doi: 10.1016/j.snb.2016.12.148
|
[18] |
LIU X L, WANG X H, HAN Q S, et al. Facile synthesis of IrO2/rGO nanocomposites with high peroxidase-like activity for sensitive colorimetric detection of low weight biothiols[J]. Talanta, 2019, 203: 227-234. doi: 10.1016/j.talanta.2019.05.070
|
[19] |
ZHANG X Z, ZHOU Y, ZHANG W, et al. Polystyrene@Au@prussian blue nanocomposites with enzyme-like activity and their application in glucose detection[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 490: 291-299.
|
[20] |
WU P, HUANG Y F, ZHAO X L, et al. MnFe2O4/MoS2 nanocomposite as Oxidase-like for electrochemical simultaneous detection of ascorbic acid, dopamine and uric acid[J]. Microchemical Journal, 2022, 181: 107780. doi: 10.1016/j.microc.2022.107780
|
[21] |
MA L, HE Y, WANG Y R, et al. Nanocomposites of Pt nanoparticles anchored on UiO66-NH2 as carriers to construct acetylcholinesterase biosensors for organophosphorus pesticide detection[J]. Electrochimica Acta, 2019, 318: 525-533. doi: 10.1016/j.electacta.2019.06.110
|
[22] |
YAN X, KONG D S, JIN R, et al. Fluorometric and colorimetric analysis of carbamate pesticide via enzyme-triggered decomposition of Gold nanoclusters-anchored MnO2 nanocomposite[J]. Sensors and Actuators B: Chemical, 2019, 290: 640-647. doi: 10.1016/j.snb.2019.04.045
|
[23] |
GUO Y, TAO Y C, MA X W, et al. A dual colorimetric and SERS detection of Hg2+ based on the stimulus of intrinsic oxidase-like catalytic activity of Ag-CoFe2O4/reduced graphene oxide nanocomposites[J]. Chemical Engineering Journal, 2018, 350: 120-130. doi: 10.1016/j.cej.2018.05.135
|
[24] |
GUO X J, YANG F, JING L, et al. In-situ generation of highly active and four-in-one CoFe2O4/H2PPOP nanozyme: Mechanism and its application for fast colorimetric detection of Cr (VI)[J]. Journal of Hazardous Materials, 2022, 431: 128621. doi: 10.1016/j.jhazmat.2022.128621
|
[25] |
FAN Y Y, LI J W, GUO Y P, et al. Digital image colorimetry on smartphone for chemical analysis: A review[J]. Measurement, 2021, 171(1): 108829.
|
[26] |
LU W J, GUO Y J, YUE Y F, et al. Smartphone-assisted colorimetric sensing platform based on molybdenum-doped carbon dots nanozyme for visual monitoring of ampicillin[J]. Chemical Engineering Journal, 2023, 468: 143615. doi: 10.1016/j.cej.2023.143615
|
[27] |
WANG Z Y, DUAN L, ZHU D Q, et al. Effects of Cu(II) and Ni(II) ions on adsorption of tetracycline to functionalized carbon nanotubes[J]. Journal of Zhejiang University SCIENCE A, 2014, 15(8): 653-661. doi: 10.1631/jzus.A1400108
|
[28] |
杨翔昊, 郭威, 孙翠竹, 等. 基于部分碳化NH2-MIL-101(Fe)的水中四环素类抗生素比色检测方法研究[J]. 中国海洋大学学报(自然科学版), 2023, 53(2): 116-124.
YANG X H, GUO W, SUN C Z, et al. A colorimetric method based on porous carbon from NH2-MIL-101(Fe)for detection of tetracyclines in water[J]. Periodical of Ocean University of China, 2023, 53(2): 116-124 (in Chinese).
|
[29] |
LUO L P, OU Y, YANG Y, et al. Rational construction of a robust metal-organic framework nanozyme with dual-metal active sites for colorimetric detection of organophosphorus pesticides[J]. Journal of Hazardous Materials, 2022, 423(Pt B): 127253.
|
[30] |
LUO L P, HUANG L J, LIU X N, et al. Mixed-valence Ce-BPyDC metal-organic framework with dual enzyme-like activities for colorimetric biosensing[J]. Inorganic Chemistry, 2019, 58(17): 11382-11388. doi: 10.1021/acs.inorgchem.9b00661
|
[31] |
LV J M, BAI D X, YANG L, et al. Bimetallic sulfide nanoparticles confined by dual-carbon nanostructures as anodes for lithium-/ sodium-ion batteries[J]. Chemical Communications, 2018, 54(64): 8909-8912. doi: 10.1039/C8CC04318C
|
[32] |
YE H Z, DING Y L, LIU T T, et al. Colorimetric assay based on NiCo2S4@N, S-rGO nanozyme for sensitive detection of H2O2 and glucose in serum and urine samples[J]. RSC Advances, 2022, 12(32): 20838-20849. doi: 10.1039/D2RA03444A
|
[33] |
LIN D L, WU S Z, CHU S S, et al. Cobalt-nitrogen Co-doped carbon as highly efficient oxidase mimics for colorimetric assay of nitrite[J]. Biosensors, 2023, 13(7): 748. doi: 10.3390/bios13070748
|
[34] |
DONG X F, CHEN F J, CHEN G G, et al. NiS2 nanodots on N, S-doped graphene synthesized via interlayer confinement for enhanced lithium-/ sodium-ion storage[J]. Journal of Colloid and Interface Science, 2022, 619: 359-368. doi: 10.1016/j.jcis.2022.03.131
|
[35] |
LIU H, XU C Y, DU Y, et al. Ultrathin Co9S8 nanosheets vertically aligned on N, S/rGO for low voltage electrolytic water in alkaline media[J]. Scientific Reports, 2019, 9: 1951. doi: 10.1038/s41598-018-35831-4
|
[36] |
DROZD M, PIETRZAK M, PARZUCHOWSKI P G, et al. Pitfalls and capabilities of various hydrogen donors in evaluation of peroxidase-like activity of gold nanoparticles[J]. Analytical and Bioanalytical Chemistry, 2016, 408(29): 8505-8513. doi: 10.1007/s00216-016-9976-z
|
[37] |
CHU S N, HUANG W, SHEN F Z, et al. Graphene oxide-based colorimetric detection of organophosphorus pesticides via a multi-enzyme cascade reaction[J]. Nanoscale, 2020, 12(10): 5829-5833. doi: 10.1039/C9NR10862A
|
[38] |
NEKOUEI F, NEKOUEI S, JASHNSAZ O, et al. Green approach for in situ growth of highly-ordered 3D flower-like CuS hollow nanospheres decorated on nitrogen and sulfur Co-doped graphene bionanocomposite with enhanced peroxidase-like catalytic activity performance for colorimetric biosensing of glucose[J]. Materials Science & Engineering. C, Materials for Biological Applications, 2018, 90: 576-588.
|
[39] |
BORTHAKUR P, BORUAH P K, DAS M R. CuS and NiS nanoparticle-decorated porous-reduced graphene oxide sheets as efficient peroxidase nanozymes for easy colorimetric detection of Hg(II) ions in a water medium and using a paper strip[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(39): 13245-13255.
|
[40] |
GAO L Z, ZHUANG J, NIE L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles[J]. Nature Nanotechnology, 2007, 2: 577-583. doi: 10.1038/nnano.2007.260
|
[41] |
CHEN X H, CHOING S N, ASCHAFFENBURG D J, et al. The formation time of Ti-O• and Ti-O•-Ti radicals at the n-SrTiO3/aqueous interface during photocatalytic water oxidation[J]. Journal of the American Chemical Society, 2017, 139(5): 1830-1841. doi: 10.1021/jacs.6b09550
|
[42] |
NEHRA M, KUMAR R, DILBAGHI N, et al. Controlled synthesis of Cu-MOF possessing peroxidase-mimetic activity for the colorimetric detection of tetracycline in aqueous solution[J]. New Journal of Chemistry, 2023, 47(16): 7595-7603. doi: 10.1039/D3NJ00218G
|
[43] |
FERNANDES-JUNIOR W S, ZACCARIN L F, OLIVEIRA G G, et al. Electrochemical sensor based on nanodiamonds and manioc starch for detection of tetracycline[J]. Journal of Sensors, 2021, 2021: 6622612.
|
[44] |
LORENZETTI A S, SIERRA T, DOMINI C E, et al. Electrochemically reduced graphene oxide-based screen-printed electrodes for total tetracycline determination by adsorptive transfer stripping differential pulse voltammetry[J]. Sensors, 2019, 20(1): 76. doi: 10.3390/s20010076
|
[45] |
YAN Y, LIU J H, LI R S, et al. Carbon dots synthesized at room temperature for detection of tetracycline hydrochloride[J]. Analytica Chimica Acta, 2019, 1063: 144-151. doi: 10.1016/j.aca.2019.02.047
|
[46] |
ZHANG J, BAO Z J, QIAN J J, et al. Copper doped zinc sulfide quantum dots as ratiometric fluorescent probes for rapid and specific detection of tetracycline residues in milk[J]. Analytica Chimica Acta, 2022, 1216: 339991. doi: 10.1016/j.aca.2022.339991
|
[47] |
孙刚, 袁守军, 彭书传, 等. 固相萃取-高效液相色谱法测定畜禽粪便中的土霉素、金霉素和四环素[J]. 环境化学, 2010, 29(4): 739-743.
SUN G, YUAN S J, PENG S C, et al. Determination of oxytetracycline, tetracycline and chlortetracycline in manure by spe-hplc method[J]. Environmental Chemistry, 2010, 29(4): 739-743 (in Chinese).
|
[48] |
GONG X, LI X, QING T P, et al. Amplified colorimetric detection of tetracycline based on an enzyme-linked aptamer assay with multivalent HRP-mimicking DNAzyme[J]. Analyst, 2019, 144(6): 1948-1954. doi: 10.1039/C8AN02284D
|
[49] |
ZHU B C, DONG S M, LIU Z C, et al. Enhanced peroxidase-like activity of bimetal (Fe/Co) MIL-101 for determination of tetracycline and hydrogen peroxide[J]. New Journal of Chemistry, 2022, 46(45): 21834-21844. doi: 10.1039/D2NJ04403J
|