[1] XIAO Y T, GUO W, QI X B, et al. Differences in cadmium uptake and accumulation in seedlings of wheat varieties with low- and high-grain cadmium accumulation under different drought stresses[J]. Plants, 2023, 12(19): 3499. doi: 10.3390/plants12193499
[2] SEVAK P, PUSHKAR B. Arsenic pollution cycle, toxicity and sustainable remediation technologies: A comprehensive review and bibliometric analysis[J]. Journal of Environmental Management, 2024, 349: 119504. doi: 10.1016/j.jenvman.2023.119504
[3] JIANG Z J, YANG S Z, LUO S. Source analysis and health risk assessment of heavy metals in agricultural land of multi-mineral mining and smelting area in the Karst region - a case study of Jichangpo Town, Southwest China[J]. Heliyon, 2023, 9(7): e17246. doi: 10.1016/j.heliyon.2023.e17246
[4] 邓海, 王锐, 严明书, 等. 矿区周边农田土壤重金属污染风险评价[J]. 环境化学, 2021, 40(4): 1127-1137. doi: 10.7524/j.issn.0254-6108.2020071601 DENG H, WANG R, YAN M S, et al. Risk assessment of heavy metal pollution in farmland soil around mining area[J]. Environmental Chemistry, 2021, 40(4): 1127-1137 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020071601
[5] ZHAO F J, WANG P. Arsenic and cadmium accumulation in rice and mitigation strategies[J]. Plant and Soil, 2020, 446(1): 1-21.
[6] PAN D D, LIU C P, YU H Y, et al. A paddy field study of arsenic and cadmium pollution control by using iron-modified biochar and silica Sol together[J]. Environmental Science and Pollution Research International, 2019, 26(24): 24979-24987. doi: 10.1007/s11356-019-05381-x
[7] HONMA T, OHBA H, KANEKO-KADOKURA A, et al. Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains[J]. Environmental Science & Technology, 2016, 50(8): 4178-4185.
[8] ARAO T, KAWASAKI A, BABA K, et al. Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice[J]. Environmental Science & Technology, 2009, 43(24): 9361-9367.
[9] YAO B M, WANG S Q, XIE S T, et al. Optimal soil Eh, pH for simultaneous decrease of bioavailable Cd, As in co-contaminated paddy soil under water management strategies[J]. Science of The Total Environment, 2022, 806: 151342. doi: 10.1016/j.scitotenv.2021.151342
[10] WANG X X, JIANG J C, DOU F G, et al. Simultaneous mitigation of arsenic and cadmium accumulation in rice (Oryza sativa L. ) seedlings by silicon oxide nanoparticles under different water management schemes[J]. Paddy and Water Environment, 2021, 19(4): 569-584. doi: 10.1007/s10333-021-00855-6
[11] SHEN B B, WANG X M, ZHANG Y, et al. The optimum pH and Eh for simultaneously minimizing bioavailable cadmium and arsenic contents in soils under the organic fertilizer application[J]. Science of the Total Environment, 2020, 711: 135229. doi: 10.1016/j.scitotenv.2019.135229
[12] HAN R X, WANG Z, WANG S Q, et al. A combined strategy to mitigate the accumulation of arsenic and cadmium in rice (Oryza sativa L. )[J]. Science of The Total Environment, 2023, 896: 165226. doi: 10.1016/j.scitotenv.2023.165226
[13] 魏晓贺, 苗欣宇, 欧阳少虎, 等. 根系分泌物介导的土壤金属氧化物纳米材料对植物毒性作用的研究进展[J]. 环境化学, 2024, 43(1): 199-209. doi: 10.7524/j.issn.0254-6108.2022071307 WEI X H, MIAO X Y, OUYANG S H, et al. Advances in phytotoxic effects of metal oxide nanomaterials mediated by root exudates in soils[J]. Environmental Chemistry, 2024, 43(1): 199-209 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022071307
[14] SUN X T, MO H J, HATANO K I, et al. Simultaneous suppression of magnetic nanoscale powder and fermented bark amendment for arsenic and cadmium uptake by radish sprouts grown in agar medium[J]. Environmental Science and Pollution Research, 2019, 26(14): 14483-14493. doi: 10.1007/s11356-019-04756-4
[15] MA X M, SHARIFAN H, DOU F G, et al. Simultaneous reduction of arsenic (As) and cadmium (Cd) accumulation in rice by zinc oxide nanoparticles[J]. Chemical Engineering Journal, 2020, 384: 123802. doi: 10.1016/j.cej.2019.123802
[16] ROSSI L, ZHANG W L, SCHWAB A P, et al. Uptake, accumulation, and in planta distribution of coexisting cerium oxide nanoparticles and cadmium in Glycine max (L. ) Merr[J]. Environmental Science & Technology, 2017, 51(21): 12815-12824.
[17] WANG Y Y, CHEN W L, GU X Y, et al. Comparison of the arsenic protective effects of four nanomaterials on pakchoi in an alkaline soil[J]. Science of The Total Environment, 2024, 912: 168918. doi: 10.1016/j.scitotenv.2023.168918
[18] MAWIA A M, HUI S Z, ZHOU L, et al. Inorganic arsenic toxicity and alleviation strategies in rice[J]. Journal of Hazardous Materials, 2021, 408: 124751. doi: 10.1016/j.jhazmat.2020.124751
[19] NAFEES M, SEHRISH A K, ALOMRANI S O, et al. Mechanism and synergistic effect of sulfadiazine (SDZ) and cadmium toxicity in spinach (Spinacia oleracea L. ) and its alleviation through zinc fortification[J]. Journal of Hazardous Materials, 2024, 464: 132903. doi: 10.1016/j.jhazmat.2023.132903
[20] SONG U, KIM J. Zinc oxide nanoparticles: a potential micronutrient fertilizer for horticultural crops with little toxicity[J]. Horticulture, Environment, and Biotechnology, 2020, 61(3): 625-631. doi: 10.1007/s13580-020-00244-8
[21] WU P, CUI P X, DU H, et al. Long-term dissolution and transformation of ZnO in soils: The roles of soil pH and ZnO particle size[J]. Journal of Hazardous Materials, 2021, 415: 125604. doi: 10.1016/j.jhazmat.2021.125604
[22] LI Y, LIANG L, LI W, et al. ZnO nanoparticle-based seed priming modulates early growth and enhances physio-biochemical and metabolic profiles of fragrant rice against cadmium toxicity[J]. Journal of Nanobiotechnology, 2021, 19(1): 75. doi: 10.1186/s12951-021-00820-9
[23] YAN S W, WU F, ZHOU S, et al. Zinc oxide nanoparticles alleviate the arsenic toxicity and decrease the accumulation of arsenic in rice (Oryza sativa L. )[J]. BMC Plant Biology, 2021, 21(1): 150. doi: 10.1186/s12870-021-02929-3
[24] SALAM A, KHAN A R, LIU L, et al. Seed priming with zinc oxide nanoparticles downplayed ultrastructural damage and improved photosynthetic apparatus in maize under cobalt stress[J]. Journal of Hazardous Materials, 2022, 423: 127021. doi: 10.1016/j.jhazmat.2021.127021
[25] SHEN M M, LIU W T, ZEB A, et al. Bioaccumulation and phytotoxicity of ZnO nanoparticles in soil-grown Brassica chinensis L. and potential risks[J]. Journal of Environmental Management, 2022, 306: 114454. doi: 10.1016/j.jenvman.2022.114454
[26] WANG Y Y, MA C X, DANG F, et al. Mixed effects and co-transfer of CeO2 NPs and arsenic in the pakchoi-snail food chain[J]. Journal of Hazardous Materials, 2024, 462: 132770. doi: 10.1016/j.jhazmat.2023.132770
[27] FOX J P, CAPEN J D, ZHANG W L, et al. Effects of cerium oxide nanoparticles and cadmium on corn (Zea mays L. ) seedlings physiology and root anatomy[J]. NanoImpact, 2020, 20: 100264. doi: 10.1016/j.impact.2020.100264
[28] NORTON G J, ADOMAKO E E, DEACON C M, et al. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species[J]. Environmental Pollution, 2013, 177: 38-47. doi: 10.1016/j.envpol.2013.01.049
[29] TOURINHO P S, VAN GESTEL C A M, LOFTS S, et al. Influence of soil pH on the toxicity of zinc oxide nanoparticles to the terrestrial isopod Porcellionides pruinosus[J]. Environmental Toxicology and Chemistry, 2013, 32(12): 2808-2815. doi: 10.1002/etc.2369
[30] WANG X X, LI X F, DOU F, et al. Elucidating the impact of three metallic nanoagrichemicals and their bulk and ionic counterparts on the chemical properties of bulk and rhizosphere soils in rice paddies[J]. Environmental Pollution, 2021, 290: 118005. doi: 10.1016/j.envpol.2021.118005
[31] SHAKOOR A, JILANI G, IQBAL T, et al. Synthesis of elemental- and nano-sulfur-enriched bio-organic phosphate composites, and their impact on nutrients bioavailability and maize growth[J]. Journal of Soil Science and Plant Nutrition, 2023, 23(3): 3281-3289. doi: 10.1007/s42729-023-01244-0
[32] TABAK M, LISOWSKA A, FILIPEK-MAZUR B. Bioavailability of sulfur from waste obtained during biogas desulfurization and the effect of sulfur on soil acidity and biological activity[J]. Processes, 2020, 8(7): 863. doi: 10.3390/pr8070863
[33] LIU L, TSYUSKO O V, UNRINE J M, et al. Pristine and sulfidized zinc oxide nanoparticles promote the release and decomposition of organic carbon in the legume rhizosphere[J]. Environmental Science & Technology, 2023, 57(24): 8943-8953.
[34] HAMMERSCHMIEDT T, HOLATKO J, ZELINKA R, et al. The combined effect of graphene oxide and elemental nano-sulfur on soil biological properties and lettuce plant biomass[J]. Frontiers in Plant Science, 2023, 14: 1057133. doi: 10.3389/fpls.2023.1057133
[35] TIMILSINA A, ADHIKARI K, CHEN H. Foliar application of green synthesized ZnO nanoparticles reduced Cd content in shoot of lettuce[J]. Chemosphere, 2023, 338: 139589. doi: 10.1016/j.chemosphere.2023.139589
[36] WANG F Y, ADAMS C A, SHI Z Y, et al. Combined effects of ZnO NPs and Cd on sweet sorghum as influenced by an arbuscular mycorrhizal fungus[J]. Chemosphere, 2018, 209: 421-429. doi: 10.1016/j.chemosphere.2018.06.099
[37] CUI J H, JIN Q, LI F B, et al. Silicon reduces the uptake of cadmium in hydroponically grown rice seedlings: why nanoscale silica is more effective than silicate[J]. Environmental Science: Nano, 2022, 9(6): 1961-1973. doi: 10.1039/D1EN00973G
[38] 王赟, 付利波, 梁海, 等. 绿肥作物对云南旱地土壤镉有效性的影响[J]. 农业环境科学学报, 2021, 40(10): 2124-2133. doi: 10.11654/jaes.2021-0457 WANG Y, FU L B, LIANG H, et al. Effects of green manure crops on cadmium availability in dryland soils in Yunnan, China[J]. Journal of Agro-Environment Science, 2021, 40(10): 2124-2133 (in Chinese). doi: 10.11654/jaes.2021-0457
[39] ANAWAR H M, TAREQ S M, AHMED G. Is organic matter a source or redox driver or both for arsenic release in groundwater?[J]. Physics and Chemistry of the Earth, 2013, 58: 49-56.
[40] ZHANG Z Y, HE X, ZHANG H F, et al. Uptake and distribution of ceria nanoparticles in cucumber plants[J]. Metallomics, 2011, 3(8): 816-822. doi: 10.1039/c1mt00049g
[41] WANG J, YUE L, ZHAO J, et al. Uptake and bioaccumulation of nanoparticles by five higher plants using single-particle-inductively coupled plasma-mass spectrometry[J]. Environmental Science: Nano, 2022, 9(8): 3066-3080. doi: 10.1039/D1EN01195B
[42] SHARIFAN H, WANG X X, GUO B L, et al. Investigation on the modification of physicochemical properties of cerium oxide nanoparticles through adsorption of Cd and As(III)/As(V)[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 13454-13461.
[43] BERNI R, LUYCKX M, XU X, et al. Reactive oxygen species and heavy metal stress in plants: Impact on the cell wall and secondary metabolism[J]. Environmental and Experimental Botany, 2019, 161: 98-106. doi: 10.1016/j.envexpbot.2018.10.017
[44] GHORI N H, GHORI T, HAYAT M Q, et al. Heavy metal stress and responses in plants[J]. International Journal of Environmental Science and Technology, 2019, 16(3): 1807-1828. doi: 10.1007/s13762-019-02215-8
[45] DASTOGEER K M G, ZAHAN M I, TAHJIB-UL-ARIF M, et al. Plant salinity tolerance conferred by arbuscular mycorrhizal fungi and associated mechanisms: A Meta-Analysis[J]. Frontiers in Plant Science, 2020, 11: 588550. doi: 10.3389/fpls.2020.588550
[46] SILVA-GIGANTE M, HINOJOSA-REYES L, ROSAS-CASTOR J M, et al. Heavy metals and metalloids accumulation in common beans (Phaseolus vulgaris L. ): A review[J]. Chemosphere, 2023, 335: 139010. doi: 10.1016/j.chemosphere.2023.139010
[47] VINOGRADOVA N, VINOGRADOVA E, CHAPLYGIN V, et al. Phenolic compounds of the medicinal plants in an anthropogenically transformed environment[J]. Molecules, 2023, 28(17): 6322. doi: 10.3390/molecules28176322
[48] HUSSAIN A, ALI S, RIZWAN M, et al. Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants[J]. Environmental Pollution, 2018, 242: 1518-1526. doi: 10.1016/j.envpol.2018.08.036
[49] FAIZAN M, FARAZ A, YUSUF M, et al. Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants[J]. Photosynthetica, 2018, 56(2): 678-686. doi: 10.1007/s11099-017-0717-0
[50] LI M, AHAMMED G J, LI C, et al. Brassinosteroid ameliorates zinc oxide nanoparticles-induced oxidative stress by improving antioxidant potential and redox homeostasis in tomato seedling[J]. Frontiers in Plant Science, 2016, 7: 615.
[51] HECKERT E G, KARAKOTI A S, SEAL S, et al. The role of cerium redox state in the SOD mimetic activity of nanoceria[J]. Biomaterials, 2008, 29(18): 2705-2709. doi: 10.1016/j.biomaterials.2008.03.014
[52] HUANG L J, SUN D W, PU H B. Photosensitized peroxidase mimicry at the hierarchical 0D/2D heterojunction - like quasi metal - organic framework interface for boosting biocatalytic disinfection[J]. Small, 2022, 18(20): 2200178. doi: 10.1002/smll.202200178
[53] WANG Y Y, WANG L Q, MA C X, et al. Effects of cerium oxide on rice seedlings as affected by co-exposure of cadmium and salt[J]. Environmental Pollution, 2019, 252: 1087-1096. doi: 10.1016/j.envpol.2019.06.007
[54] AL-MOKADEM A Z, SHETA M H, MANCY A G, et al. Synergistic effects of kaolin and silicon nanoparticles for ameliorating deficit irrigation stress in maize plants by upregulating antioxidant defense systems[J]. Plants, 2023, 12(11): 2221. doi: 10.3390/plants12112221
[55] YAN W, YANG L, WANG Q. Distribution of lanthanum among the chloroplast subcomponents of spinach and its biological effects on photosynthesis: location of the lanthanum binding sites in photosystem II[J]. Chinese Science Bulletin, 2005, 50(16): 1714-1720. doi: 10.1360/982004-876
[56] CHMIELOWSKA-BĄK J, DECKERT J. A common response to common danger?Comparison of animal and plant signaling pathways involved in cadmium sensing[J]. Journal of Cell Communication and Signaling, 2012, 6(4): 191-204. doi: 10.1007/s12079-012-0173-3
[57] KUMAR D, SINGH V P, TRIPATHI D K, et al. Effect of arsenic on growth, arsenic uptake, distribution of nutrient elements and thiols in seedlings of Wrightia arborea (Dennst. ) Mabb[J]. International Journal of Phytoremediation, 2015, 17(2): 128-134. doi: 10.1080/15226514.2013.862205