[1] |
COURTNEY R, HARRINGTON T, BYRNE K A. Indicators of soil formation in restored bauxite residues[J]. Ecological Engineering, 2013, 58: 63-68. doi: 10.1016/j.ecoleng.2013.06.022
|
[2] |
XUE S G, ZHU F, KONG X F, et al. A review of the characterization and revegetation of bauxite residues (Red mud)[J]. Environmental Science and Pollution Research, 2016, 23(2): 1120-1132. doi: 10.1007/s11356-015-4558-8
|
[3] |
LYU F, HU Y H, WANG L, et al. Dealkalization processes of bauxite residue: A comprehensive review[J]. Journal of Hazardous Materials, 2021, 403: 123671. doi: 10.1016/j.jhazmat.2020.123671
|
[4] |
KONG X F, LI M, XUE S G, et al. Acid transformation of bauxite residue: Conversion of its alkaline characteristics[J]. Journal of Hazardous Materials, 2017, 324(Pt B): 382-390.
|
[5] |
李瑜辉, 谢武明, 吕文东, 等. 赤泥基零价铁类芬顿降解罗丹明B和磺胺嘧啶的催化性能[J]. 环境化学, 2022, 41(2): 707-718. doi: 10.7524/j.issn.0254-6108.2020100402
LI Y H, XIE W M, LYV W D, et al. The Fenton-like catalytic performance of zero valent iron based red mud for degradation of rhodamine B and sulfadiazine[J]. Environmental Chemistry, 2022, 41(2): 707-718 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020100402
|
[6] |
ZHU F, LI X F, XUE S G, et al. Natural plant colonization improves the physical condition of bauxite residue over time[J]. Environmental Science and Pollution Research, 2016, 23(22): 22897-22905. doi: 10.1007/s11356-016-7508-1
|
[7] |
张雪, 王重庆, 曹亦俊. 赤泥固废土壤化修复研究进展[J]. 有色金属(冶炼部分), 2021(3): 84-92.
ZHANG X, WANG C Q, CAO Y J. Research progress on soilification of red mud solid waste[J]. Nonferrous Metals(Extractive Metallurgy), 2021(3): 84-92 (in Chinese).
|
[8] |
LUO Y F, CHEN Y L, WAN Z Y, et al. Molecular insights into the chemodiversity of dissolved organic matter and its interactions with the microbial community in eco-engineered bauxite residue[J]. Chemosphere, 2023, 330: 138755. doi: 10.1016/j.chemosphere.2023.138755
|
[9] |
薛生国, 李晓飞, 孔祥峰, 等. 赤泥碱性调控研究进展[J]. 环境科学学报, 2017, 37(8): 2815-2828.
XUE S G, LI X F, KONG X F, et al. Alkaline regulation of bauxite residue: A comprehensive review[J]. Acta Scientiae Circumstantiae, 2017, 37(8): 2815-2828 (in Chinese).
|
[10] |
TIAN T, LIU Z, ZHU F, et al. Improvement of aggregate-associated organic carbon and its stability in bauxite residue by substrate amendment addition[J]. Land Degradation & Development, 2020, 31(16): 2405-2416.
|
[11] |
XUE S G, LI M, JIANG J, et al. Phosphogypsum stabilization of bauxite residue: Conversion of its alkaline characteristics[J]. Journal of Environmental Sciences(China), 2019, 77: 1-10. doi: 10.1016/j.jes.2018.05.016
|
[12] |
朱锋, 李萌, 薛生国, 等. 自然风化过程对赤泥团聚体有机碳组分的影响[J]. 生态学报, 2017, 37(4): 1174-1183.
ZHU F, LI M, XUE S G, et al. Effects of natural weathering processes on the distribution characteristics of organic carbon and its composition in bauxite residue aggregates[J]. Acta Ecologica Sinica, 2017, 37(4): 1174-1183 (in Chinese).
|
[13] |
FLEURY G, del NERO M, BARILLON R. Molecular fractionation of a soil fulvic acid (FA) and competitive sorption of trace metals (Cu, Zn, Cd, Pb) in hematite–solution systems: Effect of the FA-to-mineral ratio[J]. RSC Advances, 2017, 7(68): 43090-43103. doi: 10.1039/C7RA06838G
|
[14] |
HOARAU M, BADIEYAN S, MARSH E N G. Immobilized enzymes: Understanding enzyme–surface interactions at the molecular level[J]. Organic & Biomolecular Chemistry, 2017, 15(45): 9539-9551.
|
[15] |
SAAR R A, WEBER J H. Fulvic acid: Modifier of metal-ion chemistry[J]. Environmental Science & Technology, 1982, 16(9): 510A-517A.
|
[16] |
肖骁, 何小松, 席北斗, 等. 生活垃圾填埋富里酸电子转移能力与影响因素[J]. 环境化学, 2018, 37(4): 679-688. doi: 10.7524/j.issn.0254-6108.2017082910
XIAO X, HE X S, XI B D, et al. Electron transfer capacity of fulvic acid and its factors during municipal solid waste landfill[J]. Environmental Chemistry, 2018, 37(4): 679-688 (in Chinese). doi: 10.7524/j.issn.0254-6108.2017082910
|
[17] |
周岩梅, 张琼, 汤鸿霄. 多环芳烃类有机物在腐殖酸上的吸附行为研究[J]. 环境科学学报, 2010, 3(8): 1564-1571.
ZHOU Y M, ZHANG Q, TANG H X. Sorption behavior of polycyclic aromatic hydrocarbons onto humic acid particulates[J]. Acta Scientiae Circumstantiae, 2010, 3(8): 1564-1571 (in Chinese).
|
[18] |
GOEBEL M O, WOCHE S K, ABRAHAM P M, et al. Water repellency enhances the deposition of negatively charged hydrophilic colloids in a water-saturated sand matrix[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 431: 150-160.
|
[19] |
CASTALDI P, SILVETTI M, SANTONA L, et al. XRD, FTIR, and thermal analysis of bauxite ore-processing waste (red mud) exchanged with heavy metals[J]. Clays and Clay Minerals, 2008, 56(4): 461-469. doi: 10.1346/CCMN.2008.0560407
|
[20] |
LIU Y, LIN C X, WU Y G. Characterization of red mud derived from a combined Bayer Process and bauxite calcination method[J]. Journal of Hazardous Materials, 2007, 146(1/2): 255-261.
|
[21] |
PAN X L, YU H Y, TU G F. Reduction of alkalinity in bauxite residue during Bayer digestion in high-ferrite diasporic bauxite[J]. Hydrometallurgy, 2015, 151: 98-106. doi: 10.1016/j.hydromet.2014.11.015
|
[22] |
ZHANG D R, CHEN H R, NIE Z Y, et al. Extraction of Al and rare earths (Ce, Gd, Sc, Y) from red mud by aerobic and anaerobic bi-stage bioleaching[J]. Chemical Engineering Journal, 2020, 401: 125914. doi: 10.1016/j.cej.2020.125914
|
[23] |
PARADIS M, DUCHESNE J, LAMONTAGNE A, et al. Long-term neutralisation potential of red mud bauxite with brine amendment for the neutralisation of acidic mine tailings[J]. Applied Geochemistry, 2007, 22(11): 2326-2333. doi: 10.1016/j.apgeochem.2007.04.021
|
[24] |
ZHAI H, ZHANG W J, WANG L J, et al. Dynamic force spectroscopy for quantifying single-molecule organo–mineral interactions[J]. CrystEngComm, 2021, 23(1): 11-23. doi: 10.1039/D0CE00949K
|
[25] |
OLIVELLI M S, FUGARIU I, TORRES SANCHEZ R M, et al. Unraveling Mechanisms behind Biomass-Clay Interactions Using Comprehensive Multiphase Nuclear Magnetic Resonance (NMR) Spectroscopy[J]. Acs Earth and Space Chemistry, 2020, 4(11): 2061-2072. doi: 10.1021/acsearthspacechem.0c00215
|
[26] |
LIU S Y, KLEBER M, TAKAHASHI L K, et al. Synchrotron-Based Mass Spectrometry to Investigate the Molecular Properties of Mineral-Organic Associations[J]. Analytical Chemistry, 2013, 85(12): 6100-6106. doi: 10.1021/ac400976z
|
[27] |
CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation - Emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710.
|
[28] |
CHEN H, KOOPAL L K, XIONG J, et al. Mechanisms of soil humic acid adsorption onto montmorillonite and kaolinite[J]. Journal of Colloid and Interface Science, 2017, 504: 457-467. doi: 10.1016/j.jcis.2017.05.078
|
[29] |
SONG F, WU F, GUO F, et al. Interactions between stepwise-eluted sub-fractions of fulvic acids and protons revealed by fluorescence titration combined with EEM-PARAFAC[J]. Science of the Total Environment, 2017, 605: 58-65.
|
[30] |
EUSTERHUES K, WAGNER F E, HAEUSLER W, et al. Characterization of Ferrihydrite-Soil Organic Matter Coprecipitates by X-ray Diffraction and Mossbauer Spectroscopy[J]. Environmental Science & Technology, 2008, 42(21): 7891-7897.
|
[31] |
CHEN C, KUKKADAPU R, SPARKS D L. Influence of Coprecipitated Organic Matter on Fe2+(aq)- Catalyzed Transformation of Ferrihydrite: Implications for Carbon Dynamics[J]. Environmental Science & Technology, 2015, 49(18): 10927-10936.
|
[32] |
WU Y, DENG D, JIANG J, et al. Ca-driven stable regulatory of alkalinity within desilication products: Experimental, modeling, transformation mechanism and DFT study[J]. Science of the Total Environment, 2023, 868.
|
[33] |
YANG Z L, GAO B Y, YUE Q Y, et al. Effect of pH on the coagulation performance of Al-based coagulants and residual aluminum speciation during the treatment of humic acid–kaolin synthetic water[J]. Journal of Hazardous Materials, 2010, 178(1): 596-603.
|
[34] |
BAIBARAC M, SMARANDA I, NILA A, et al. Optical properties of folic acid in phosphate buffer solutions: the influence of pH and UV irradiation on the UV-VIS absorption spectra and photoluminescence[J]. Scientific Reports, 2019, 9.
|
[35] |
王宁. 分子光谱和等温滴定量热法研究蛋白与小分子的相互作用[D]. 郑州大学, 2019.
WANG N. Study of Interaction between Protein and Small Molecules by Molecular Spectroscopy and Isothermal Titration Calorimetry[D]. Zhengzhou University, 2019.
|
[36] |
ZHANG C, WEI S, HU Y, et al. Selective adsorption of tannic acid on calcite and implications for separation of fluorite minerals[J]. Journal of Colloid and Interface Science, 2018, 512: 55-63. doi: 10.1016/j.jcis.2017.10.043
|