[1] 戴晓虎. 我国污泥处理处置现状及发展趋势[J]. 科学, 2020, 72(6): 30-34.
[2] LIU H B, WANG Y Y, WANG L, et al. Stepwise hydrolysis to improve carbon releasing efficiency from sludge[J]. Water Research, 2017, 119: 225-233. doi: 10.1016/j.watres.2017.04.055
[3] WU Y Q, SONG K, JIANG Y H, et al. Effect of thermal hydrolysis sludge supernatant as carbon source for biological denitrification with pilot-scale two-stage anoxic/oxic process and nitrogen balance model establishment[J]. Biochemical Engineering Journal, 2018, 139(1): 132-138.
[4] ANDREWS N, WILLIS J, MULLER C. Assessment of technology advancements for future energy reduction[M]. New York: IWA Pubilshing, 2016.
[5] BARBER W P F. Thermal hydrolysis for sewage treatment: A critical review[J]. Water Research, 2016, 104(1): 53-71.
[6] ZHU Y F, LIU H B, LIU H, et al. Filtration characteristics of anaerobic fermented sewage sludge for fatty acids production[J]. Separation and Purification Technology, 2015, 142: 8-13. doi: 10.1016/j.seppur.2014.11.037
[7] ZHANG J B, SHAO Y T, WANG H C, et al. Current operation state of wastewater treatment plants in urban China[J]. Environmental Research, 2021, 195: 110843. doi: 10.1016/j.envres.2021.110843
[8] BIKEM O. Batch biological denitrification using Arundo donax, Glycyrrhiza glabra, and Gracilaria verrucosa as carbon source[J]. Process Biochemistry, 2006, 41(6): 1289-1295. doi: 10.1016/j.procbio.2005.12.030
[9] TOKIWA Y, CALABIA B P, UGWU C U, et al. Biodegradability of plastics[J]. International Journal of Molecular Sciences, 2009, 10(9): 3722-3742. doi: 10.3390/ijms10093722
[10] ZHU X Y, CHEN Y G. Reduction of N2O and NO generation in anaerobic-aerobic (low dissolved oxygen) biological wastewater treatment process by using sludge alkaline fermentation liquid[J]. Environmental Science & Technology, 2011, 45(6): 2137-2143.
[11] 韩露, 韩芸, 代洋. 等. 污泥热水解滤液作污水反硝化碳源的脱氮性能[J]. 中国环境科学, 2021, 41(8): 3653-3659. doi: 10.3969/j.issn.1000-6923.2021.08.021
[12] LU H W, XIAO S, LE T, et al. Evaluation of solubilization characteristics of thermal hydrolysis process[J]. Proceedings of the Water Environment Federation, 2014, 2014(15): 6312-6336. doi: 10.2175/193864714815938896
[13] 王治军, 王伟. 热水解预处理改善污泥的厌氧消化性能[J]. 环境科学, 2005, 26(1): 68-71. doi: 10.3321/j.issn:0250-3301.2005.01.015
[14] WANG Q D, XU Q Y, DU Z L, et al. Mechanistic insights into the effects of biopolymer conversion on macroscopic physical properties of waste activated sludge during hydrothermal treatment: Importance of the Maillard reaction[J]. Science of the Total Environment, 2021, 769: 144798. doi: 10.1016/j.scitotenv.2020.144798
[15] ZHANG Q, VLAEMINCK S E, DEBARBADILLO C, et al. Supernatant organics from anaerobic digestion after thermal hydrolysis cause direct and/or diffusional activity loss for nitritation and anammox[J]. Water Research, 2018, 143(1): 270-281.
[16] LOOSDRECHT M C M V, NIELSEN P H, LOPEZ-VAZQUEZ C M, et al. Experimental methods in wastewater treatment[M]. IWA Publishing, 2016.
[17] 国家环境保护总局. 水和废水监测分析方法(第4版)[M]. 北京: 中国环境科学出版社, 2002.
[18] WANG W G, YAN Y, ZHAO Y H, et al. Characterization of stratified EPS and their role in the initial adhesion of anammox consortia[J]. Water Research, 2020, 169: 115223. doi: 10.1016/j.watres.2019.115223
[19] SIEDLECKA E M, KUMIRSKA J, OSSOWSKI T, et al. Determination of volatile fatty acids in environmental aqueous samples[J]. Polish Journal of Environmental Studies, 2008, 17(3): 351-356.
[20] WEN C, PAUL W , LEENHEER J A , et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter [J]. Environmental Science & Technology, 2003, 37(24): 5701-5710.
[21] 徐秋子, 段娜, 林聪, 等. 不同温度水热预处理脱水污泥试验研究[J]. 中国沼气, 2019, 37(1): 31-35. doi: 10.3969/j.issn.1000-1166.2019.01.007
[22] CHEN S S, LI N, DONG B, et al. New insights into the enhanced performance of high solid anaerobic digestion with dewatered sludge by thermal hydrolysis: Organic matter degradation and methanogenic pathways[J]. Journal of Hazardous Materials, 2018, 342: 1-9. doi: 10.1016/j.jhazmat.2017.08.012
[23] ZHANG D, FENG Y M, HUANG H B, et al. Recalcitrant dissolved organic nitrogen formation in thermal hydrolysis pretreatment of municipal sludge[J]. Environment International, 2020, 138: 105629. doi: 10.1016/j.envint.2020.105629
[24] LI Y Y, HU Y Y, WANG G H, et al. Screening pretreatment methods for sludge disintegration to selectively reclaim carbon source from surplus activated sludge[J]. Chemical Engineering Journal, 2014, 255(1): 365-371.
[25] STUCKEY D C, MCCARTY P L. The effect of thermal pretreatment on the anaerobic biodegradability and toxicity of waste activated sludge[J]. Water Research, 1986, 18(11): 1343-1353.
[26] 孙洪伟, 王淑莹, 王希明, 等. 低温SBR反硝化过程亚硝态氮积累试验研究[J]. 环境科学, 2009, 30(19): 3619-3623.
[27] ZHENG X, ZHOU W N, WAN R, et al. Increasing municipal wastewater BNR by using the preferred carbon source derived from kitchen wastewater to enhance phosphorus uptake and short-cut nitrification-denitrification[J]. Chemical Engineering Journal, 2018, 344(1): 556-564.
[28] HU H D, MA S J, ZHANG X X, et al. Characteristics of dissolved organic nitrogen in effluent from a biological nitrogen removal process using sludge alkaline fermentation liquid as an external carbon source[J]. Water Research, 2020, 176: 115741. doi: 10.1016/j.watres.2020.115741
[29] SUN J, SUN M, GUO L, et al. The effects of denitrification with sludge alkaline fermentation liquid and thermal hydrolysis liquid as carbon sources[J]. Rsc Advances, 2016, 6(76): 72333-72341. doi: 10.1039/C6RA11982D
[30] ZHANG Q, DE CLIPPELEIR H, SU C Y, et al. Deammonification for digester supernatant pretreated with thermal hydrolysis: overcoming inhibition through process optimization[J]. Applied Microbiology & Biotechnology, 2016, 100(12): 5595-5606.
[31] ZHOU M Y, HAN Y, ZHUO Y, et al. Effect of thermal hydrolyzed sludge filtrate as an external carbon source on biological nutrient removal performance of A2/O system[J]. Journal of Environmental Management, 2023, 332: 117425. doi: 10.1016/j.jenvman.2023.117425
[32] WU N P, ZHANG Q, TAN B, et al. Integrated fixed-film activated sludge systems in continuous-flow and batch mode acclimated from low to high aniline concentrations: Performance, mechanism and metabolic pathways[J]. Bioresource Technology, 2023, 379: 129043. doi: 10.1016/j.biortech.2023.129043
[33] ZHANG L F, FU G K, Z ZHANG. Simultaneous nutrient and carbon removal and electricity generation in self-buffered biocathode microbial fuel cell for high-salinity mustard tuber wastewater treatment[J]. Bioresource Technology, 2019, 272: 105-113. doi: 10.1016/j.biortech.2018.10.012
[34] DING S Z, BAO P, WANG B, et al. Long-term stable simultaneous partial nitrification, anammox and denitrification (SNAD) process treating real domestic sewage using suspended activated sludge[J]. Chemical Engineering Journal, 2018, 339(2018): 180-188.
[35] DOU Q H, ZHANG L, DONG T G, et al. Degradation properties of fulvic acid and its microbially driven mechanism from a partial nitritation bioreactor through multi-spectral and bioinformatic analysis[J]. Journal of Environmental Sciences, 2024, 135(1): 318-331.
[36] ZHOU S L, SUN Y, LI Z X, et al. Characteristics and driving factors of the aerobic denitrifying microbial community in Baiyangdian Lake, Xiong’an New Area[J]. Microorganisms, 2020, 8(5): 714. doi: 10.3390/microorganisms8050714
[37] WANG J L, ZHOU J, WANG Y M, et al. Efficient nitrogen removal in a modified sequencing batch biofilm reactor treating hypersaline mustard tuber wastewater: The potential multiple pathways and key microorganisms[J]. Water Research, 2020, 177: 115734. doi: 10.1016/j.watres.2020.115734
[38] LAYTON A C, KARANTH P N, LAJOIE C A, et al. Quantification of Hyphomicrobium populations in activated sludge from an industrial wastewater treatment system as determined by 16S rRNA analysis[J]. Applied and Environmental Microbiology, 2000, 66(311): 1167-1174.
[39] PARK H J, KWON J H, YUN J, et al. Characterization of nitrous oxide reduction by Azospira sp. HJ23 isolated from advanced wastewater treatment sludge[J]. Journal of Environmental Science and Health, Part A, 2020, 55(12): 1459-1467. doi: 10.1080/10934529.2020.1812321
[40] ZHAO W H, PENG Y Z, WANG M X, et al. Nutrient removal and microbial community structure variation in the two-sludge system treating low carbon/nitrogen domestic wastewater[J]. Bioresource Technology, 2019, 294: 122161. doi: 10.1016/j.biortech.2019.122161
[41] KIM J M, LEE H J, JEON C O, et al. Characterization of the denitrification-associated phosphorus uptake properties of “Candidatus Accumulibacter phosphatis” clades in sludge subjected to enhanced biological phosphorus removal[J]. Applied and Environmental Microbiology, 2013, 79(6): 1969-1979. doi: 10.1128/AEM.03464-12