[1] LI J, LIU X, ZHAO G, et al. Piezoelectric materials and techniques for environmental pollution remediation[J]. Science of The Total Environment, 2023, 869: 161767-161773. doi: 10.1016/j.scitotenv.2023.161767
[2] JIANG X, LIU B, ZENG Q, et al. Mussel-Inspired Robust Peony-like Cu3(PO4)2 Composite Switchable Superhydrophobic Surfaces for Bidirectional Efficient Oil/Water Separation[J]. ACS Applied Materials & Interfaces, 2023, 15(10): 13700-13710.
[3] JI K, LIU C, HE H, et al. Research Progress of Water Treatment Technology Based on Nanofiber Membranes[J]. Polymers (Basel), 2023, 15(3): 72-81.
[4] ZOU L, VIDALIS I, STEELE D, et al. Surface hydrophilic modification of RO membranes by plasma polymerization for low organic fouling[J]. Journal of Membrane Science, 2011, 369(1-2): 420-428. doi: 10.1016/j.memsci.2010.12.023
[5] KARIMAN H, SHAFIEIAN A, KHIADANI M. Small scale desalination technologies: A comprehensive review[J]. Desalination, 2023, 567: 8762-8771.
[6] DUONG P H H, CHUNG T S. Application of thin film composite membranes with forward osmosis technology for the separation of emulsified oil-water[J]. Journal of Membrane Science, 2014, 452: 117-126. doi: 10.1016/j.memsci.2013.10.030
[7] FARAHBAKHSH J, GOLGOLI M, KHIADANI M, et al. Recent advances in surface tailoring of thin film forward osmosis membranes: A review[J]. Chemosphere, 2024, 346: 140493-140499. doi: 10.1016/j.chemosphere.2023.140493
[8] BARBHUIYA N H, MISRA U, SINGH S P. Synthesis, fabrication, and mechanism of action of electrically conductive membranes: a review[J]. Environmental Science-Water Research & Technology, 2021, 7(4): 671-705.
[9] YANG Y, QIAO S, ZHOU J T, et al. Mitigating Membrane Fouling Based on In Situ •OH Generation in a Novel Electro-Fenton Membrane Bioreactor[J]. Environmental Science & Technology, 2020, 54(12): 7669-7676.
[10] KOROS W J, ZHANG C. Materials for next-generation molecularly selective synthetic membranes[J]. Nature Materials, 2017, 16(3): 289-297. doi: 10.1038/nmat4805
[11] PATIL J J, JANA A, GETACHEW B A, et al. Conductive carbonaceous membranes: recent progress and future opportunities[J]. Journal of Materials Chemistry A, 2021, 9(6): 3270-3289. doi: 10.1039/D0TA08928A
[12] ZHOU Y G, MAHARUBIN S, TRAN P, et al. Anti-biofilm AgNP-polyaniline-polysulfone composite membrane activated by low intensity direct/alternating current[J]. Environmental Science-Water Research & Technology, 2018, 4(10): 1511-1521.
[13] CRUZ-TATO P, RIVERA-FUENTES N, FLYNN M, et al. Anti-Fouling Electroconductive Forward Osmosis Membranes: Electrochemical and Chemical Properties[J]. ACS Applied Polymer Materials, 2019, 1(5): 1061-1070. doi: 10.1021/acsapm.9b00087
[14] WANG X X, SUN M, ZHAO Y M, et al. In Situ Electrochemical Generation of Reactive Chlorine Species for Efficient Ultrafiltration Membrane Self-Cleaning[J]. Environmental Science & Technology, 2020, 54(11): 6997-7007.
[15] LIU L, XU Y, WANG K P, et al. Fabrication of a novel conductive ultrafiltration membrane and its application for electrochemical removal of hexavalent chromium[J]. Journal of Membrane Science, 2019, 584: 191-201. doi: 10.1016/j.memsci.2019.05.018
[16] HIRTSCHULZ M, MILDE F, MALIC E, et al. Carbon nanotube Bloch equations: A many-body approach to nonlinear and ultrafast optical properties[J]. Physical Review B, 2008, 77(3): 721-731.
[17] HUBE S, ESKAFI M, HRAFNKELSDóTTIR K F, et al. Direct membrane filtration for wastewater treatment and resource recovery: A review[J]. Science of the Total Environment, 2020, 710: 1632-1641.
[18] DORRER C, RüHE J. Condensation and wetting transitions on microstructured ultrahydrophobic surfaces[J]. Langmuir, 2007, 23(7): 3820-3824. doi: 10.1021/la063130f