[1] |
INDRA A, PAIK U, SONG T. Boosting electrochemical water oxidation with metal hydroxide carbonate templated Prussian blue analogues[J]. Angewandte Chemie (International Ed. in English), 2018, 57(5): 1241-1245. doi: 10.1002/anie.201710809
|
[2] |
SHOKRI A, SALIMI M, ABMATIN T. Employing photo Fenton and UV/ZnO processes for removing Reactive red 195 from aqueous environment[J]. Fresenius Environmental Bulletin, 2017, 26(2-A): 1560-1565.
|
[3] |
薛萍萍, 刘建广, 冷曙光. 臭氧高级氧化工艺去除水中消毒副产物前体物的研究进展[J]. 净水技术, 2022, 41(2): 9-15,52.
XUE P P, LIU J G, LENG S G. Research progress of DBPs precursors removal by advanced ozonation processes(AOPs)[J]. Water Purification Technology, 2022, 41(2): 9-15,52(in Chinese).
|
[4] |
王倩. 新型纳米电极电催化处理有机污染物的研究[D]. 天津: 南开大学, 2012.
WANG Q. Study on electrocatalytic treatment of organic pollutants by new nano-electrode[D]. Tianjin: Nankai University, 2012(in Chinese) .
|
[5] |
时桂杰. 光催化氧化处理水中污染物的研究现状及发展趋向[J]. 环境科学与技术, 1998, 21(3): 1-4.
SHI G J. Research status and development trend of photocatalytic oxidation treatment of pollutants in water[J]. Environmental Science and Technology, 1998, 21(3): 1-4 (in Chinese).
|
[6] |
JING L, WANG M, LI X Y, et al. Covalently functionalized TiO2 with ionic liquid: A high-performance catalyst for photoelectrochemical water oxidation[J]. Applied Catalysis B: Environmental, 2015, 166/167: 270-276. doi: 10.1016/j.apcatb.2014.11.046
|
[7] |
DONG X Q, LIU X M, CHENG M, et al. Prussian blue and its analogues: Reborn as emerging catalysts for a Fenton-like process in water purification[J]. Coordination Chemistry Reviews, 2023, 482: 215067. doi: 10.1016/j.ccr.2023.215067
|
[8] |
JAIN S. Prussian Blue and Its Analogues: Electrochemistry and Analytical Applications[J]. RESEARCH REVIEW International Journal of Multidisciplinary, 2023, 8(3): 193-204. doi: 10.31305/rrijm.2023.v08.n03.023
|
[9] |
XU C W, YANG Z W, ZHANG X K, et al. Prussian blue analogues in aqueous batteries and desalination batteries[J]. Nano-Micro Letters, 2021, 13(1): 166. doi: 10.1007/s40820-021-00700-9
|
[10] |
AN J J, ZHU L H, WANG N, et al. Photo-Fenton like degradation of tetrabromobisphenol A with grapheneBiFeO3 composite as a catalyst[J]. Chemical Engineering Journal, 2013, 219: 225-237. doi: 10.1016/j.cej.2013.01.013
|
[11] |
DIAO F Y, HUANG W, CTISTIS G, et al. Bifunctional and self-supported NiFeP-layer-coated NiP rods for electrochemical water splitting in alkaline solution[J]. ACS Applied Materials & Interfaces, 2021, 13(20): 23702-23713.
|
[12] |
QIN H L, YIN J Z, LI Q Q, et al. Ce-Fe bimetallic oxide derived from Prussian blue precursors presents enhanced photodegradation ability for tetracycline under visible light: Its controlled morphology and mechanism studies[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106739. doi: 10.1016/j.jece.2021.106739
|
[13] |
GENGLER R Y N, TOMA L M, PARDO E, et al. Prussian blue analogues of reduced dimensionality[J]. Small, 2012, 8(16): 2532-2540. doi: 10.1002/smll.201200517
|
[14] |
LUDI A, GÜDEL H U. Structural chemistry of polynuclear transition metal cyanides[M]//Inorganic Chemistry. Berlin, Heidelberg: Springer Berlin/Heidelberg: Springer Berlin Heidelberg, 2005: 1-21.
|
[15] |
MAO Y, LI Y, GU N. Review: Progress in the preparation of iron based magnetic nanoparticles for biomedical applications[J]. Journal of Harbin Institute of Technology(New Series), 2019, 26(2): 1-18.
|
[16] |
YANG Y X, LI B L, ZHANG Q, et al. Prussian blue analogues-derived CoFe-B nanocubes with increased specific surface area and modulated electronic structure as enhanced oxygen evolution electrocatalysts[J]. Energy Technology, 2021, 9(1): 2000178. doi: 10.1002/ente.202000178
|
[17] |
KARTHIKEYAN S, MANDAL A B, ANANDAN C, et al. Preparation and characterization of mesoporous activated carbon and its application in heterocatalytic Fenton oxidation organics in high saline wastewater[J].
|
[18] |
LIU S Q, CHENG S, LUO L, et al. Degradation of dye rhodamine B under visible irradiation with Prussian blue as a photo-Fenton reagent[J]. Environmental Chemistry Letters, 2011, 9(1): 31-35. doi: 10.1007/s10311-009-0242-x
|
[19] |
MING H, TORAD N L K, CHIANG Y D, et al. Size-and shape-controlled synthesis of Prussian Blue nanoparticles by a polyvinylpyrrolidone-assisted crystallization process[J]. CrystEngComm, 2012, 14(10): 3387-3396. doi: 10.1039/c2ce25040c
|
[20] |
XUAN L A , WEN W , HL B , et al. Construction of hierarchical Prussian blue microcrystal with high sunlight absorption for efficient photo-thermal degradation of organic pollutants[J]. Separation and Purification Technology, 2021.2691: 18724.
|
[21] |
刘璇, 王稳, 李贵亮. 普鲁士蓝对养殖液中亚甲基蓝的光热催化降解[J]. 华南农业大学学报, 2022, 43(2): 42-48. doi: 10.7671/j.issn.1001-411X.202102011
LIU X, WANG W, LI G L. Photothermal catalytic degradation of methylene blue in culture solution by Prussian blue[J]. Journal of South China Agricultural University, 2022, 43(2): 42-48(in Chinese). doi: 10.7671/j.issn.1001-411X.202102011
|
[22] |
WANG Q Q, YANG Y, MA S C, et al. Preparation of Fe3O4@Prussian blue core/shell composites for enhanced photo-Fenton degradation of rhodamine B[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2020, 606: 125416. doi: 10.1016/j.colsurfa.2020.125416
|
[23] |
XIAO R Y, ZHANG Y Y, WANG S F, et al. Prussian blue modified CeO2 as a heterogeneous photo-Fenton-like catalyst for degradation of norfloxacin in water[J]. Environmental Science and Pollution Research, 2021, 28(48): 69301-69313. doi: 10.1007/s11356-021-15498-7
|
[24] |
陈思, 白波, 王洪伦, 等. 普鲁士蓝@酵母菌催化剂的合成及其Fenton性能[J]. 环境科学, 2018, 39(8): 3759-3766.
CHEN S, BAI B, WANG H L, et al. Preparation of Prussian blue@yeast catalyst and its heterogeneous Fenton performance[J]. Environmental Science, 2018, 39(8): 3759-3766 (in Chinese).
|
[25] |
LIN H B, FANG Q L, WANG W, et al. Prussian blue/PVDF catalytic membrane with exceptional and stable Fenton oxidation performance for organic pollutants removal[J]. Applied Catalysis B-environmental, 2020, 273: 119047. doi: 10.1016/j.apcatb.2020.119047
|
[26] |
LI X N, WANG J H, RYKOV A I, et al. Prussian blue/TiO2 nanocomposites as a heterogeneous photo-Fenton catalyst for degradation of organic pollutants in water[J]. Catalysis Science & Technology, 2015, 5(1): 504-514.
|
[27] |
SHI W L, LI J H, LI X N, et al. Fenton-like Prussian blue coated magnetic hollow Fe3O4 nanocomposites for dye removal[J]. IOP Conference Series: Earth and Environmental Science, 2019, 358(5): 052071. doi: 10.1088/1755-1315/358/5/052071
|
[28] |
LI X N, LIU J Y, RYKOV A I, et al. Excellent photo-Fenton catalysts of Fe-Co Prussian blue analogues and their reaction mechanism study[J]. Applied Catalysis B: Environmental, 2015, 179: 196-205. doi: 10.1016/j.apcatb.2015.05.033
|
[29] |
AKRAM N, GUO Y, HASAN A, et al. Synergistic catalysis of Fe3O4/CuO bimetallic catalyst derived from Prussian blue analogues for the efficient decomposition of various organic pollutants[J]. Chemical Physics, 2020, 540(January 2021): 110974.
|
[30] |
SONG N, REN S Y, ZHANG Y , et al. Confinement of Prussian Blue Analogs Boxes Inside Conducting Polymer Nanotubes Enables Significantly Enhanced Catalytic Performance for Water Treatment[J]. Advanced functional materials, 2022, 32(34): 2204751.
|
[31] |
CHENG M, LIU Y, HUANG D L, et al. Prussian blue analogue derived magnetic Cu-Fe oxide as a recyclable photo-Fenton catalyst for the efficient removal of sulfamethazine at near neutral pH values[J]. Chemical Engineering Journal, 2019, 362: 865-876. doi: 10.1016/j.cej.2019.01.101
|
[32] |
TONG X, MA S C, QI Y, et al. Synthesis of Fe-Co alloy encapsulated nitrogen-doped graphitized carbon: High catalytic activation and low metal ion leaching in microwave assisted Fenton reaction[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 108: 64-70. doi: 10.1016/j.jtice.2020.01.009
|
[33] |
AMOR C, MARCHÃO L, LUCAS M S, et al. Application of advanced oxidation processes for the treatment of recalcitrant agro-industrial wastewater: A review[J]. Water, 2019, 11(2): 205. doi: 10.3390/w11020205
|
[34] |
TUNAY O. Chemical oxidation applications for industrial wastewaters[M].
|
[35] |
CHEN X Y, CHEN J W, QIAO X L, et al. Performance of nano-Co3O4/peroxymonosulfate system: Kinetics and mechanism study using Acid Orange 7 as a model compound[J]. Applied Catalysis B: Environmental, 2008, 80(1): 116-121.
|
[36] |
ANIPSITAKIS G P, DIONYSIOU D D, GONZALEZ M A. Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. implications of chloride ions[J]. Environmental Science & Technology, 2006, 40(3): 1000-1007.
|
[37] |
LIN K Y A, CHEN B J, CHEN C K. Evaluating Prussian blue analogues MII3[MIII(CN)6]2 (MII = Co, Cu, Fe, Mn, Ni; MIII = Co, Fe) as activators for peroxymonosulfate in water[J]. RSC Advances, 2016, 6(95): 92923-92933. doi: 10.1039/C6RA16011E
|
[38] |
ZHAO C X, LIU B, LI X N, et al. A Co-Fe Prussian blue analogue for efficient Fenton-like catalysis: the effect of high-spin cobalt[J]. Chemical Communications, 2019, 55(50): 7151-7154. doi: 10.1039/C9CC01872G
|
[39] |
ZHANG W X, ZHANG H, YAN X, et al. Controlled synthesis of bimetallic Prussian blue analogues to activate peroxymonosulfate for efficient bisphenol A degradation[J]. Journal of Hazardous Materials, 2020, 387: 121701. doi: 10.1016/j.jhazmat.2019.121701
|
[40] |
MA X X, HAO J N, WU J R, et al. Prussian blue nanozyme as a pyroptosis inhibitor alleviates neurodegeneration[J]. Advanced Materials, 2022, 34(15): e2106723. doi: 10.1002/adma.202106723
|
[41] |
DENG J, CHENG Y Q, LU Y A, et al. Mesoporous manganese Cobaltite nanocages as effective and reusable heterogeneous peroxymonosulfate activators for Carbamazepine degradation[J]. Chemical Engineering Journal, 2017, 330: 505-517. doi: 10.1016/j.cej.2017.07.149
|
[42] |
LI X N, WANG Z H, ZHANG B, et al. FeCo3-O4 nanocages derived from nanoscale metal–organic frameworks for removal of bisphenol A by activation of peroxymonosulfate[J]. Applied Catalysis B: Environmental, 2016, 181: 788-799. doi: 10.1016/j.apcatb.2015.08.050
|
[43] |
CAO J, SUN S W, LI X, et al. Efficient charge transfer in aluminum-cobalt layered double hydroxide derived from Co-ZIF for enhanced catalytic degradation of tetracycline through peroxymonosulfate activation[J]. Chemical Engineering Journal, 2020, 382: 122802. doi: 10.1016/j.cej.2019.122802
|
[44] |
HUANG G X, WANG C Y, YANG C W, et al. Degradation of bisphenol A by peroxymonosulfate catalytically activated with Mn1.8Fe1.2O4 nanospheres: Synergism between Mn and Fe[J]. Environmental Science & Technology, 2017, 51(21): 12611-12618.
|
[45] |
MacDOWELL N, FLORIN N, BUCHARD A, et al. An overview of CO2 capture technologies[J]. Energy & Environmental Science, 2010, 3(11): 1645-1669.
|
[46] |
WANG N, MA W J, REN Z Q, et al. Prussian blue analogues derived porous nitrogen-doped carbon microspheres as high-performance metal-free peroxymonosulfate activators for non-radical-dominated degradation of organic pollutants[J]. Journal of Materials Chemistry A, 2018, 6(3): 884-895. doi: 10.1039/C7TA08472B
|
[47] |
AI S S, GUO X, ZHAO L, et al. Zeolitic imidazolate framework-supported Prussian blue analogues as an efficient Fenton-like catalyst for activation of peroxymonosulfate[J]. Colloids and Surfaces A: Physcicochemical and Engineering Aspects, 2019, 581: 123796.
|
[48] |
唐荣, 茅苏楠. 普鲁士蓝衍生制得的C-Co活化过一硫酸盐处理亚甲基蓝废水的研究[J]. 生态与农村环境学报, 2020, 36(6): 811-818.
TANG R, MAO S N. Preparation of C-Co derived from co Prussian blue analogues as an activator of peroxymonosulfate for the degradation of methylene blue[J]. Journal of Ecology and Rural Environment, 2020, 36(6): 811-818 (in Chinese).
|
[49] |
YANG Y Q, GU Y X, LIN H D, et al. Bicarbonate-enhanced iron-based Prussian blue analogs catalyze the Fenton-like degradation of p-nitrophenol[J]. Journal of Colloid and Interface Science, 2022, 608(Pt 3): 2884-2895.
|
[50] |
JIN X, HUANG Y J, HE S, et al. Preparation of Co-Fe based Prussian blue analogs loaded nickel foams for Fenton-like degradation of tetracycline[J]. Applied Catalysis A: General, 2023, 650: 118985. doi: 10.1016/j.apcata.2022.118985
|
[51] |
ZHANG L, ZHANG B F, LIU Y X, et al. Modulation of reaction pathway of Prussian blue analogues derived Zn-Fe double oxides towards organic pollutants oxidation[J]. Chemical Engineering Journal, 2023, 454: 140103. doi: 10.1016/j.cej.2022.140103
|
[52] |
MAO X Z, WANG M L, LI J, et al. High atom utility of robust Ca-Co bimetallic catalyst for efficient Fenton-like catalysis in advanced oxidation processes[J]. Applied Catalysis B: Environmental, 2023, 331: 122698. doi: 10.1016/j.apcatb.2023.122698
|
[53] |
LI X N, HUANG X, XI S B, et al. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis[J]. Journal of the American Chemical Society, 2018, 140(39): 12469-12475. doi: 10.1021/jacs.8b05992
|
[54] |
GAO R, HUANG Z, XU J L, et al. Pollutant degradation by Fenton-like system with Prussian blue analogs (PBAs) on cotton and modified oyster shell: Via re-Fenton reaction[J]. Separation and Purification Technology, 2024, 334: 126339. doi: 10.1016/j.seppur.2024.126339
|
[55] |
SHI Y M, ZHANG B. Correction: Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction[J]. Chemical Society Reviews, 2016, 45(6): 1781. doi: 10.1039/C6CS90013E
|
[56] |
CHENG H, ZHOU H, ZHUANG Y Y, et al. An integrated optimization of composition and pore structure boosting electrocatalytic oxygen evolution of Prussian blue analogue derivatives[J]. Electrochimica Acta, 2022, 416: 140284. doi: 10.1016/j.electacta.2022.140284
|
[57] |
YAN Y, XIA B Y, ZHAO B, et al. A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting[J]. Journal of Materials Chemistry A, 2016, 4(45): 17587-17603. doi: 10.1039/C6TA08075H
|
[58] |
WANG J H, CUI W, LIU Q, et al. Recent Progress in cobalt-based heterogeneous catalysts for electrochemical water splitting[J]. Advanced Materials, 2016, 28(2): 215-230. doi: 10.1002/adma.201502696
|
[59] |
YAN G, ZHANG X T, XIAO L G. Prussian blue analogues-derived bimetallic phosphide hollow nanocubes grown on Ni foam as water splitting electrocatalyst[J]. Journal of Materials Science, 2019, 54(9): 7087-7095. doi: 10.1007/s10853-019-03362-6
|
[60] |
HAO L, WANG L H, ZHANG Y H, et al. Fe-doped CoFe-P phosphides nanosheets dispersed on nickel foam derived from Prussian blue analogues as efficient electrocatalysts for the oxygen evolution reaction[J]. Journal of Solid State Chemistry, 2022, 311: 123084. doi: 10.1016/j.jssc.2022.123084
|
[61] |
BIRADHA K, GOSWAMI A, MOI R. Coordination polymers as heterogeneous catalysts in hydrogen evolution and oxygen evolution reactions[J]. Chemical Communications, 2020, 56(74): 10824-10842. doi: 10.1039/D0CC04236F
|
[62] |
CHENG W R, LU X F, LUAN D Y, et al. NiMn-based bimetal-organic framework nanosheets supported on multi-Channel carbon Fibers for efficient oxygen electrocatalysis[J]. Angewandte Chemie(International Ed. in English), 2020, 59(41): 18234-18239. doi: 10.1002/anie.202008129
|
[63] |
董沛沛, 冯永强, 王潇, 等. 多孔普鲁士蓝类似物的合成及电催化析氧性能[J]. 精细化工, 2021, 38(4): 823-829.
DONG P P, FENG Y Q, WANG X, et al. Synthesis of porous Prussian-blue analogues and electrocatalytic properties for oxygen evolution reaction[J]. Fine Chemicals, 2021, 38(4): 823-829(in Chinese).
|
[64] |
QU H Q, MA Y R, GOU Z L, et al. Ni2P/C nanosheets derived from oriented growth Ni-MOF on nickel foam for enhanced electrocatalytic hydrogen evolution[J]. Journal of Colloid and Interface Science, 2020, 572: 83-90. doi: 10.1016/j.jcis.2020.03.068
|
[65] |
WANG X, YU L, GUAN B Y, et al. Metal-organic framework hybrid-assisted formation of Co3O4 /Co-Fe oxide double-shelled nanoboxes for enhanced oxygen evolution[J]. Advanced Materials, 2018: e1801211.
|
[66] |
HAFEZI KAHNAMOUEI M H, SHAHROKHIAN S. Mesoporous nanostructured composite derived from thermal treatment CoFe prussian blue analogue cages and electrodeposited NiCo-S as an efficient electrocatalyst for an oxygen evolution reaction[J]. ACS Applied Materials & Interfaces, 2020, 12(14): 16250-16263.
|
[67] |
FANG B, HE N N, LI Y, et al. Prussian blue-derived hollow carbon-wrapped Fe-doped CoS2 nanocages as durable electrocatalyst for efficient hydrogen evolution[J]. Electrochimica Acta, 2023, 448: 142187. doi: 10.1016/j.electacta.2023.142187
|
[68] |
LIN W S, RINAWATI M, HUANG W H, et al. Surface restructuring Prussian blue analog-derived bimetallic CoFe phosphides by N-doped graphene quantum dots for electroactive hydrogen evolving catalyst[J]. Journal of Colloid and Interface Science, 2024, 654(Pt A): 677-687.
|
[69] |
HEGNER F S, GALÁN-MASCARÓS J R, LÓPEZ N. A database of the structural and electronic properties of Prussian blue, Prussian white and berlin green compounds through density functional theory[J]. Inorganic Chemistry, 2016, 55(24): 12851-12862. doi: 10.1021/acs.inorgchem.6b02200
|
[70] |
QIAO Y S, SCHELTER E J. Lanthanide photocatalysis[J]. Accounts of Chemical Research, 2018, 51(11): 2926-2936. doi: 10.1021/acs.accounts.8b00336
|
[71] |
ALAYDRUS M, SAKAUE M, KASAI H. A DFT+U study on the contribution of 4f electrons to oxygen vacancy formation and migration in Ln-doped CeO2[J]. Physical Chemistry Chemical Physics: PCCP, 2016, 18(18): 12938-12946. doi: 10.1039/C6CP00637J
|
[72] |
WANG F X, ZHANG Z W, ZHANG Z C, et al. Prussian blue analogue nanospheres immobilized on self-floating biochar for micropollutant degradation via photo-Fenton process[J]. Chemical Engineering Journal, 2024, 487: 150506. doi: 10.1016/j.cej.2024.150506
|
[73] |
GANJI P, CHOWDARI R K, LIKOZAR B. Photocatalytic reduction of carbon dioxide to methanol: Carbonaceous materials, kinetics, industrial feasibility, and future directions[J]. Energy & Fuels: an American Chemical Society Journal, 2023, 37(11): 7577-7602.
|
[74] |
NAM D H, SHEKHAH O, LEE G, et al. Intermediate binding control using metal–organic frameworks enhances electrochemical CO2 reduction[J]. Journal of the American Chemical Society, 2020, 142(51): 21513-21521. doi: 10.1021/jacs.0c10774
|
[75] |
MENG X Y, YANG J Y, ZHANG C C, et al. Light-driven CO2 reduction over Prussian blue analogues as heterogeneous catalysts[J]. ACS Catalysis, 2022, 12(1): 89-100. doi: 10.1021/acscatal.1c04415
|
[76] |
LIU Q, WU L P, JACKSTELL R, et al. Using carbon dioxide as a building block in organic synthesis[J]. Nature Communications, 2015, 6: 5933. doi: 10.1038/ncomms6933
|
[77] |
ZHU S A, LI N, ZHANG D P, et al. Metal/oxide heterostructures derived from Prussian blue analogues for efficient photocatalytic CO2 hydrogenation to hydrocarbons[J]. Journal of CO2 Utilization, 2022, 64: 102177. doi: 10.1016/j.jcou.2022.102177
|