[1] 李琦, 陈帆, 刘桂臻, 等. 二氧化碳地质封存的环境风险评价方法研究综述[J]. 环境工程, 2019, 37(2): 13-21.
[2] 霍宏博, 陶林, 王德英, 等. 基于CO2提高采收率的海上CCUS完整性挑战与对策[J]. 石油钻探技术, 2023, 51(2): 74-79. doi: 10.11911/syztjs.2023009
[3] 张智, 丁宸宇, 李进, 等. 渤海某油田油套管防腐选材及服役寿命预测[J]. 中国安全生产科学技术, 2023(11): 100-107.
[4] YAN W, DENG J G, DONG X L, et al. Experimental study of 3% Cr tubing steel in CO2 and CO2 -H2S corrosion environment[J]. Oil and Gas Facilities, 2012, 1(5): 43-48. doi: 10.2118/157302-PA
[5] ERNENS D, HARIHARAN H, VAN HAAFTEN W M, et al. Improving casing integrity with induction brazing of casing connections[J]. SPE Drilling & Completion, 2018, 33(3): 241-51.
[6] VRåLSTAD T, SAASEN A, FJæR E, et al. Plug & abandonment of offshore wells: Ensuring long-term well integrity and cost-efficiency[J]. Journal of Petroleum Science and Engineering, 2019, 173(2019): 478-491.
[7] KIRAN R, TEODORIU C, DADMOHAMMADI Y, et al. Identification and evaluation of well integrity and causes of failure of well integrity barriers (A review)[J]. Journal of Natural Gas Science and Engineering, 2017, 45: 511-526. doi: 10.1016/j.jngse.2017.05.009
[8] LESTI M, TIEMEYER C, PLANK J. CO2 stability of Portland cement based well cementing systems for use on carbon capture & storage (CCS) wells[J]. Cement and Concrete Research, 2013, 45: 45-54. doi: 10.1016/j.cemconres.2012.12.001
[9] DUGUID A, RADONJIC M, SCHERER G W. Degradation of cement at the reservoir/cement interface from exposure to carbonated brine[J]. International Journal of Greenhouse Gas Control, 2011, 5(6): 1413-1428. doi: 10.1016/j.ijggc.2011.06.007
[10] BARLET-GOUéDARD V, RIMMELé G, GOFFé B, et al. Well technologies for CO2 geological storage: CO2-resistant cement[J]. Oil & Gas Science and Technology-Revue de l'IFP, 2007, 62(3): 325-334.
[11] LAUDET J, GARNIER A, NEUVILLE N, et al. The behavior of oil well cement at downhole CO2 storage conditions: Static and dynamic laboratory experiments[J]. Energy Procedia, 2011, 4: 5251-5258. doi: 10.1016/j.egypro.2011.02.504
[12] JUNG H B, UM W. Experimental study of potential wellbore cement carbonation by various phases of carbon dioxide during geologic carbon sequestration[J]. Applied Geochemistry, 2013, 35: 161-172. doi: 10.1016/j.apgeochem.2013.04.007
[13] KRAVANJA G, KNEZ Ž. Carbonization of Class G well cement containing metakaolin under supercritical and saturated environments[J]. Construction and Building Materials, 2023, 376: 131050. doi: 10.1016/j.conbuildmat.2023.131050
[14] CHAPARRO M C, KLOSE T, HIRSCH A, et al. Modelling of wellbore cement alteration due to CO2-rich brine interaction in a large-scale autoclave experiment[J]. International Journal of Greenhouse Gas Control, 2021, 110: 103428. doi: 10.1016/j.ijggc.2021.103428
[15] CHOI Y S, NEŠIĆ S. Determining the corrosive potential of CO2 transport pipeline in high pCO2–water environments[J]. International Journal of Greenhouse Gas Control, 2011, 5(4): 788-797. doi: 10.1016/j.ijggc.2010.11.008
[16] SUN H F, WANG H X, ZENG Y M, et al. Corrosion challenges in supercritical CO2 transportation, storage, and utilization—a review[J]. Renewable and Sustainable Energy Reviews, 2023, 179: 113292. doi: 10.1016/j.rser.2023.113292
[17] SUN C, SUN J B, WANG Y, et al. Synergistic effect of O2, H2S and SO2 impurities on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system[J]. Corrosion Science, 2016, 107: 193-203. doi: 10.1016/j.corsci.2016.02.032
[18] GAMBICHLER T, HATCH K L, AVERMAETE A, et al. Ultraviolet protection factor of fabrics: comparison of laboratory and field-based measurements[J]. Photodermatol Photoimmunol Photomed, 2002, 18(3): 135-40. doi: 10.1034/j.1600-0781.2001.00739.x
[19] HUA Y, BARKER R, NEVILLE A. Effect of temperature on the critical water content for general and localised corrosion of X65 carbon steel in the transport of supercritical CO2[J]. International Journal of Greenhouse Gas Control, 2014, 31(2014): 48-60.
[20] COLLIER J, PAPAVINASAM S, LI J, et al. Effect of impurities on the corrosion performance of steels in supercritical carbon dioxide: Optimization of experimental procedure[J]. Corrision, 2013. NACE-2013-357.
[21] CABRINI S L, PASTORE, RADAELLI M. Corrosion rate of high CO2 pressure pipeline steel for carbon capture transport and storage[J]. La Metallurgia Italiana: Corrosione, 2014, 106: 21-26.
[22] WEI L, PANG X L, GAO K W. Effect of small amount of H2S on the corrosion behavior of carbon steel in the dynamic supercritical CO2 environments[J]. Corrosion Science, 2016, 103: 132-144. doi: 10.1016/j.corsci.2015.11.009
[23] WEI L, GAO K W, LI Q. Corrosion of low alloy steel containing 0.5% chromium in supercritical CO2-saturated brine and water-saturated supercritical CO2 environments[J]. Applied Surface Science, 2018, 440: 524-534. doi: 10.1016/j.apsusc.2018.01.181
[24] LI Y Y, ZHU G Y, HOU B S, et al. A numerical model based on finite element method for predicting the corrosion of carbon steel under supercritical CO2 conditions[J]. Process Safety and Environmental Protection, 2021, 149: 866-884. doi: 10.1016/j.psep.2021.03.030
[25] HUA Y, BARKER R, NEVILLE A. The effect of O2 content on the corrosion behaviour of X65 and 5Cr in water-containing supercritical CO2 environments[J]. Applied Surface Science, 2015, 356: 499-511. doi: 10.1016/j.apsusc.2015.08.116
[26] HUA Y, JONNALAGADDA R, ZHANG L, et al. Assessment of general and localized corrosion behavior of X65 and 13Cr steels in water-saturated supercritical CO2 environments with SO2/O2[J]. International Journal of Greenhouse Gas Control, 2017, 64: 126-136. doi: 10.1016/j.ijggc.2017.07.012
[27] ZHANG Y H, GAO K W, SCHMITT G. Water effect on steel under supercritical CO2 condition[C]//CORROSION 2011. Houston, Texas, 2011.
[28] XIANG Y, SONG C, LI C, et al. Characterization of 13Cr steel corrosion in simulated EOR-CCUS environment with flue gas impurities[J]. Process Safety and Environmental Protection, 2020, 140: 124-136. doi: 10.1016/j.psep.2020.04.051
[29] YUAN Z, SCHUBERT J, ESTEBAN U C, et al. Casing failure mechanism and characterization under HPHT conditions in south Texas[C]// International Petroleum Technology Conference. Beijing, China, 2013.
[30] GRAY E P, BECKER E. Finite-element studies of nearwellbore region during cementing operations-Part I[J]. SPE Drilling & Completion, 2009, 4(3): 127-136.
[31] CARROLL S, CAREY J W, DZOMBAK D, et al. Review: Role of chemistry, mechanics, and transport on well integrity in CO2 storage environments[J]. International Journal of Greenhouse Gas Control, 2016, 49: 149-60. doi: 10.1016/j.ijggc.2016.01.010
[32] BERGER A, FLECKENSTEIN W W, EUSTES A W, et al. Effect of eccentricity, voids, cement channels, and pore pressure decline oncollapse resistance of casing[C]// SPE Annual Technical Conference and Exhibition. Houston, Texas, 2004.
[33] LAVOIE R N. Effect of dynamic loading on wellbore leakage for the Wabamun area CO2-sequestration project[J]. Journal of Canadian Petroleum Technology, 2014, 1: 69-82.
[34] PICKLE B, SWAN T. Slickline-retrievable wellhead plugs and downhole plugging system provides wellbore integrity for extreme HPHT environments[C]// Offshore Technology Conference. Houston, Texas, USA, 2012.
[35] GOR G Y, ELLIOT T R, PRéVOST J H. Effects of thermal stresses on caprock integrity during CO2 storage[J]. International Journal of Greenhouse Gas Control, 2013, 12: 300-309. doi: 10.1016/j.ijggc.2012.11.020
[36] GOODARZI S, SETTARI A, KEITH D. Geomechanical modeling for CO2 storage in Nisku aquifer in Wabamun Lake area in Canada[J]. International Journal of Greenhouse Gas Control, 2012, 10: 113-122. doi: 10.1016/j.ijggc.2012.05.020
[37] HONGLIN X, ZHANG Z, SHI T, et al. Influence of the WHCP on cement sheath stress and integrity in HTHP gas well[J]. Journal of Petroleum Science and Engineering, 2015, 126: 174-180. doi: 10.1016/j.petrol.2014.11.028
[38] YVI L G, SHINGO A, EMMANUEL H, et al. Well Integrity: Modeling of thermo-mechanical behavior and gas migration along wells-application to Ketzin injection well[J]. Energy Procedia, 2012, 23: 462-471. doi: 10.1016/j.egypro.2012.06.042
[39] JUNG H B, KABILAN S, CARSON J P, et al. Wellbore cement fracture evolution at the cement–basalt caprock interface during geologic carbon sequestration[J]. Applied Geochemistry, 2014, 47: 1-16. doi: 10.1016/j.apgeochem.2014.04.010
[40] WANG W, TALEGHANI A D. Three-dimensional analysis of cement sheath integrity around Wellbores[J]. Journal of Petroleum Science and Engineering, 2014, 121: 38-51. doi: 10.1016/j.petrol.2014.05.024
[41] DE ANDRADE J, SANGESLAND S. Cement sheath failure mechanisms: Numerical estimates to design for long-term well Integrity[J]. Journal of Petroleum Science and Engineering, 2016, 147: 682-698. doi: 10.1016/j.petrol.2016.08.032
[42] CROW W, CAREY J W, GASDA S, et al. Wellbore integrity analysis of a natural CO2 producer[J]. International Journal of Greenhouse Gas Control, 2010, 4(2): 186-197. doi: 10.1016/j.ijggc.2009.10.010
[43] ALAREF O, ROURKE M, KHABIBULLIN M, et al. Comprehensive well Integrity solutions in challenging environments using latest technology innovations[C]// Offshore Technology Conference Asia. Kuala Lumpur, Malaysia, 2016.
[44] VAN KUIJK R, ZEROUG S, FROELICH B, et al. A novel ultrasonic cased-hole imager for enhanced cement evaluation[C]. International Petroleum Technology Conference. Doha, Qatar, 2005.
[45] Norwegian Oil and Gas Association. Well integrity in drilling and well operations: NORSOK D-010[S]. Norway: Standards Norway Strandveien, 2013.
[46] Petroleum and natural gas industries. Well integrity Part 1: Life cycle governance. ISO 16530-1[S]. Switaerland: ISO copyright office, 2012.
[47] Petroleum and natural gas industries. Well integrity Part 2: Well integrity for the operational phase: ISO/TS 16530-2[S]. Switaerland: ISO copyright office, 2013.
[48] 朱良松. 二氧化碳注入过程井筒力学完整性研究[D] 北京: 中国石油大学(北京), 2020.
[49] 郭枫, 林何, 郑夏. 井筒完整性风险评价模型研究[J]. 钻采工艺, 2020, 43: 12-16. doi: 10.3969/J.ISSN.1006-768X.2020.05.04
[50] GUEN Y L, MEYER V, POUPARD O, et al. A risk-based approach for well integrity management over long term in a CO2 geological storage project[C]// SPE Asia Pacific Oil and Gas Conference & Exhibition. Jakarta, Indonesia, 2009.
[51] LOIZZO M, AKEMU O A, JAMMES L, et al. Quantifying the risk of CO2 leakage through wellbores[J]. SPE Drilling & Completion, 2011, 26(3): 324-331.