[1] TANG X, MISZTAL P K, NAZAROFF W W, et al. Volatile organic compound emissions from humans indoors[J]. Environmental Science & Technology, 2016, 50: 12686-12694.
[2] LIU F, CAO R, RONG S, et al. Tungsten doped manganese dioxide for efficient removal of gaseous formaldehyde at ambient temperatures[J]. Materials & Design, 2018, 149: 165-172.
[3] BAI B, QIAO Q, ARANDIYAN H, et al. Three-dimensional ordered mesoporous MnO2-Supported Ag nanoparticles for ctalytic removal of formaldehyde[J]. Environmental Science & Technology, 2016, 50: 2635-2640.
[4] YUSUF A, SNAPE C, HE J, et al. Advances on transition metal oxides catalysts for formaldehyde oxidation: A review[J]. Catalysis Reviews, 2017, 59: 189-233. doi: 10.1080/01614940.2017.1342476
[5] QI L, CHENG B, YU J, et al. High-surface area mesoporous Pt/TiO2 hollow chains for efficient formaldehyde decomposition at ambient temperature[J]. Journal of Hazardous Materials, 2016, 301: 522-530. doi: 10.1016/j.jhazmat.2015.09.026
[6] BOHM M, SALEM M Z, SRBA J. Formaldehyde emission monitoring from a variety of solid wood, plywood, blockboard and flooring products manufactured for building and furnishing materials[J]. Journal of Hazardous Materials, 2012, 221-222: 68-79. doi: 10.1016/j.jhazmat.2012.04.013
[7] WANG R, ZHU R, ZHANG D. Adsorption of formaldehyde molecule on the pristine and silicon-doped boron nitride nanotubes[J]. Chemical Physics Letters, 2008, 467: 131-135. doi: 10.1016/j.cplett.2008.11.002
[8] PEI J, ZHANG J S. On the performance and mechanisms of formaldehyde removal by chemi-sorbents[J]. Chemical Engineering Journal, 2011, 167: 59-66. doi: 10.1016/j.cej.2010.11.106
[9] ZHAO D-Z, LI X-S, SHI C, et al. Low-concentration formaldehyde removal from air using a cycled storage–discharge (CSD) plasma catalytic process[J]. Chemical Engineering Science, 2011, 66: 3922-3929. doi: 10.1016/j.ces.2011.05.019
[10] LIANG W J, LI J, LI J X, et al. Formaldehyde removal from gas streams by means of NaNO2 dielectric barrier discharge plasma[J]. Journal of Hazardous Materials, 2010, 175: 1090-1095. doi: 10.1016/j.jhazmat.2009.10.034
[11] KIBANOVA D, SLEIMAN M, CERVINI-SILVA J, et al. Adsorption and photocatalytic oxidation of formaldehyde on a clay-TiO2 composite[J]. Journal of Hazardous Materials, 2012, 211-212: 233-239. doi: 10.1016/j.jhazmat.2011.12.008
[12] NIE L, YU J, JARONIEC M, et al. Room-temperature catalytic oxidation of formaldehyde on catalysts[J]. Catalysis Science & Technology, 2016, 6: 3649-3669.
[13] ZHANG C, HE H, TANAKA K-I. Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature[J]. Applied Catalysis B: Environmental, 2006, 65: 37-43. doi: 10.1016/j.apcatb.2005.12.010
[14] CHEN T, DOU H, LI X, et al. Tunnel structure effect of manganese oxides in complete oxidation of formaldehyde[J]. Microporous and Mesoporous Materials, 2009, 122: 270-274. doi: 10.1016/j.micromeso.2009.03.010
[15] TAN Y, ZHU F, WANG H, et al. Noble‐Metal‐Free metallic glass as a highly active and stable bifunctional electrocatalyst for water splitting[J]. Advanced Materials Interfaces, 2017, 4.
[16] FARBER C, STEGNER P, ZENNECK U, et al. Teaming up main group metals with metallic iron to boost hydrogenation catalysis[J]. Nature Communications, 2022, 13: 3210. doi: 10.1038/s41467-022-30840-4
[17] MIAO L, WANG J, ZHANG P. Review on manganese dioxide for catalytic oxidation of airborne formaldehyde[J]. Applied Surface Science, 2019, 466: 441-453. doi: 10.1016/j.apsusc.2018.10.031
[18] TSONCHEVA T, IVANOVA L, PANEVA D, et al. Cobalt and iron oxide modified mesoporous zirconia: Preparation, characterization and catalytic behaviour in methanol conversion[J]. Microporous and Mesoporous Materials, 2009, 120: 389-396. doi: 10.1016/j.micromeso.2008.12.007
[19] COUZON N, BOIS L, FELLAH C, et al. Manganese oxidation states repartition in a channel-like mesoporous zirconium oxide[J]. Journal of Porous Materials, 2020, 27: 1823-1835. doi: 10.1007/s10934-020-00962-5
[20] DENG Z, WANG M, ZHANG H, et al. Mn–Zr composite oxides as efficient catalysts for catalytic oxidation of vinyl chloride[J]. New Journal of Chemistry, 2023, 47: 9212-9221. doi: 10.1039/D2NJ05964A
[21] 焦坤灵, 焦晓云, 刘佳杰, 等. Mn/Zr改性稀土尾矿催化剂NH3-SCR脱硝机理分析[J]. 中国环境科学, 2023, 43: 5655-5662. doi: 10.3969/j.issn.1000-6923.2023.11.003
[22] 谈冠希, 迟姚玲, 李双, 等. 锰锆复合氧化物CO催化还原NO性能研究[J]. 燃料化学学报, 2019, 47: 1258-1264.
[23] BULAVCHENKO O A, VINOKUROV Z S, AFONASENKO T N, et al. Reduction of mixed Mn–Zr oxides: in situ XPS and XRD studies[J]. Dalton Transactions, 2015, 44: 15499-15507. doi: 10.1039/C5DT01440A
[24] OUYANG J, ZHAO Z, SUIB S L, et al. Degradation of Congo Red dye by a Fe2O3@CeO2-ZrO2/Palygorskite composite catalyst: Synergetic effects of Fe2O3[J]. Journal of Colloid and Interface Science, 2019, 539: 135-145. doi: 10.1016/j.jcis.2018.12.052
[25] YAN Q, LI X, ZHAO Q, et al. Shape-controlled fabrication of the porous Co3O4 nanoflower clusters for efficient catalytic oxidation of gaseous toluene[J]. Journal of Hazardous Materials, 2012, 209-210: 385-391. doi: 10.1016/j.jhazmat.2012.01.039
[26] TODOROVA S, NAYDENOV A, KOLEV H, et al. Mechanism of complete n-hexane oxidation on silica supported cobalt and manganese catalysts[J]. Applied Catalysis A: General, 2012, 413-414: 43-51. doi: 10.1016/j.apcata.2011.10.041
[27] DUAN C, MENG M, HUANG H, et al. Effect of calcination temperature on the structure and formaldehyde removal performance at room temperature of Cr/MnO2 catalysts[J]. Research on Chemical Intermediates, 2022, 48: 2705-2720. doi: 10.1007/s11164-022-04713-w
[28] LIU P, HE H, WEI G, et al. Effect of Mn substitution on the promoted formaldehyde oxidation over spinel ferrite: Catalyst characterization, performance and reaction mechanism[J]. Applied Catalysis B: Environmental, 2016, 182: 476-484. doi: 10.1016/j.apcatb.2015.09.055
[29] LU S, ZHENG F, WANG H, et al. Engineering MnO2 nanotubes@Co3O4 polyhedron composite with cross-linked network structure for efficient catalytic oxidation of formaldehyde[J]. Catalysis Letters, 2023, 154: 2949-2962.
[30] BAI B, LI J, HAO J. 1D-MnO2, 2D-MnO2 and 3D-MnO2 for low-temperature oxidation of ethanol[J]. Applied Catalysis B: Environmental, 2015, 164: 241-250. doi: 10.1016/j.apcatb.2014.08.044
[31] YE Q, ZHAO J, HUO F, et al. Nanosized Au supported on three-dimensionally ordered mesoporous β-MnO2: Highly active catalysts for the low-temperature oxidation of carbon monoxide, benzene, and toluene[J]. Microporous and Mesoporous Materials, 2013, 172: 20-29. doi: 10.1016/j.micromeso.2013.01.007
[32] WANG J, LI J, JIANG C, et al. The effect of manganese vacancy in birnessite-type MnO2 on room-temperature oxidation of formaldehyde in air[J]. Applied Catalysis B: Environmental, 2017, 204: 147-155. doi: 10.1016/j.apcatb.2016.11.036
[33] WANG J, ZHANG P, LI J, et al. Room-temperature oxidation of formaldehyde by layered manganese oxide: Effect of water[J]. Environmental Science & Technology, 2015, 49: 12372-12379.
[34] CAI T, HUANG H, DENG W, et al. Catalytic combustion of 1, 2-dichlorobenzene at low temperature over Mn-modified Co3O4 catalysts[J]. Applied Catalysis B: Environmental, 2015, 166-167: 393-405. doi: 10.1016/j.apcatb.2014.10.047
[35] QIAN J, MO J, ZHOU Y, et al. Study of manganese–cerium composite oxide catalysed oxidation for low concentration formaldehyde at room temperature[J]. Materials Chemistry and Physics, 2022, 285: 126151-126167. doi: 10.1016/j.matchemphys.2022.126151
[36] 周辉, 步宇婷, 唐兢, 等. 温和条件下MnO2催化剂的制备及其降解甲醛的研究[J]. 现代化工, 2023, 43: 233-237.