[1] |
郭铭玉. 用于船舶发动机尾气中NOx去除的抗硫SCR催化剂研究[D]. 天津: 天津大学, 2020.
|
[2] |
孙化栋. 选择性催化还原技术在船舶上应用的现状分析[J]. 青岛远洋船员职业学院学报, 2012, 33(3): 26-29. doi: 10.3969/j.issn.2095-3747.2012.03.007
|
[3] |
LU F X, HAN Y, JIANG J, et al. Unraveling the role of sodium in removing oxygen from propylene over Fe-based catalysts[J]. Catalysis Letters, 2024, 154(4): 1674-1682. doi: 10.1007/s10562-023-04387-y
|
[4] |
张浩南, 陈耿, 朱颖颖. 铁基氨气选择性催化还原(NH3-SCR)催化剂性能的研究进展[J]. 化学世界, 2023, 64(1): 12-21.
|
[5] |
LIU S, HUANG Y, LI S S, et al. Uniqueκ-Ce2Zr2O8 superstructure promoting the NOx adsorption-selective catalytic reduction (AdSCR) performance of the WO3/CeZrOx catalyst[J]. Environmental Science & Technology, 2023, 57(43): 16685-16694.
|
[6] |
李翔辉. 水热处理对Cu-SAPO-34催化剂在NH3-SCR反应中的影响[D]. 天津: 天津大学, 2019.
|
[7] |
张超, 朱丽娜, 郝敏彤, 等. Fe基分子筛NH3-SCR催化剂的研究进展[J]. 精细石油化工, 2021, 38(6): 75-80.
|
[8] |
ZHANG Y, YANG S, ZHU X Y, et al. Effects of sulfation on hematite for selective catalytic reduction of nitrogen oxides with ammonia[J]. Journal of Colloid and Interface Science, 2022, 606: 1445-1456. doi: 10.1016/j.jcis.2021.08.088
|
[9] |
NAGASE T, MIYAKAWA M, NISHIOKA M. Template-free mesoporous LTA zeolite synthesized using microwave heating in the flow system[J]. Microporous and Mesoporous Materials, 2020, 306: 110375. doi: 10.1016/j.micromeso.2020.110375
|
[10] |
王智远, 高宁宁, 王辉国, 等. X分子筛的热稳定性研究[J]. 石油炼制与化工, 2022, 53(4): 82-88.
|
[11] |
WANG X T, HU H P, ZHANG X Y, et al. Effect of iron loading on the performance and structure of Fe/ZSM-5 catalyst for the selective catalytic reduction of NO with NH3[J]. Environmental Science and Pollution Research, 2019, 26(2): 1706-1715. doi: 10.1007/s11356-018-3513-x
|
[12] |
郑伟, 陈佳玲, 郭立, 等. 金属负载型分子筛催化剂在NH3-SCR反应中水热稳定性的研究进展[J]. 燃料化学学报, 2020, 48(10): 1193-1207.
|
[13] |
李成隆. W改性Ce-Zr催化剂SCR脱硝性能与机理研究[D]. 大连: 大连海事大学, 2023.
|
[14] |
翟广鹏. 稀土元素Pr改性MnOx催化剂SCR脱硝性能与机理研究[D]. 大连: 大连海事大学, 2022.
|
[15] |
KLUKOWSKI D, BALLE P, GEIGER B, et al. On the mechanism of the SCR reaction on Fe/HBEA zeolite[J]. Applied Catalysis B-Environmental, 2009, 93(1/2): 185-193.
|
[16] |
黄一丹, 郭铭玉, 刘宪斌, 等. 涂覆式蜂窝状钒钨钛催化剂的SCR及抗中毒性能[J]. 环境工程学报, 2023, 17(8): 2624-2634. doi: 10.12030/j.cjee.202302042
|
[17] |
喻成龙, 黄碧纯, 杨颖欣. 分子筛应用于低温NH3-SCR脱硝催化剂的研究进展[J]. 华南理工大学学报(自然科学版), 2015, 43(3): 143-150.
|
[18] |
马江丽, 杨冬霞, 于飞, 等. 不同硅铝比对Fe-Beta分子筛选择性催化还原性能的影响[J]. 功能材料, 2020, 51(5): 5202-5207.
|
[19] |
XIA Y, ZHAN W C, GUO Y, et al. Fe-Beta zeolite for selective catalytic reduction of NOx with NH3: influence of Fe content[J]. Chinese Journal of Catalysis, 2016, 37(12): 2069-2078. doi: 10.1016/S1872-2067(16)62534-2
|
[20] |
YANG C X, ZHANG K X, ZHANG Y K, et al. An environmental and highly active Ce/Fe-Zr-SO42- catalyst for selective catalytic reduction of NO with NH3: the improving effects of CeO2 and SO42-[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106799. doi: 10.1016/j.jece.2021.106799
|
[21] |
SHAKYA B M, HAROLD M P, BALAKOTAIAH V. Simulations and optimization of combined Fe- and Cu-zeolite SCR monolith catalysts[J]. Chemical Engineering Journal, 2015, 278: 374-384. doi: 10.1016/j.cej.2014.11.029
|
[22] |
XIA F T, SONG Z X, LIU X, et al. Improved catalytic activity and N2 selectivity of Fe-Mn-Ox catalyst for selective catalytic reduction of NO by NH3 at low temperature[J]. Research on Chemical Intermediates, 2018, 44(4): 2703-2717. doi: 10.1007/s11164-018-3255-x
|
[23] |
KRISHNA K, MAKKEE M. Preparation of Fe-ZSM-5 with enhanced activity and stability for SCR of NOx[J]. Catalysis Today, 2006, 114(1): 23-30. doi: 10.1016/j.cattod.2006.02.002
|
[24] |
张泽凯, 俞河, 廖冰冰, 等. 铁前驱体对Fe/β催化NH3-SCR反应性能的影响[J]. 催化学报, 2012, 33(3): 576-580.
|
[25] |
LIU J X, LIU J, ZHAO Z, et al. Fe-Beta@CeO2 core-shell catalyst with tunable shell thickness for selective catalytic reduction of NOx with NH3[J]. Aiche Journal, 2017, 63(10): 4430-4441. doi: 10.1002/aic.15743
|
[26] |
李帅, 朱娜, 程扬健, 等. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
|
[27] |
DENG J L, LIU J X, SONG W Y, et al. Selective catalytic reduction of NO with NH3 over Mo-Fe/beta catalysts: the effect of Mo loading amounts[J]. Rsc Advances, 2017, 7(12): 7130-7139. doi: 10.1039/C6RA27126J
|
[28] |
刘亭, 沈伯雄, 朱国营, 等. 抗水、抗SO2的低温选择性催化还原催化剂研究进展[J]. 环境污染与防治, 2008(11): 80-83.
|
[29] |
王鑫鑫. 酸处理载体对CeO2/ZrO2催化剂NH3-SCR脱硝性能影响研究[D]. 大连: 大连海事大学, 2023.
|
[30] |
王兵, 廖香, 何光耀, 等. 纳米化粉煤灰基高水热稳定性Cu-SSZ-13分子筛的合成及脱硝性能研究[J]. 环境科学学报, 2023, 43(8): 301-313.
|
[31] |
GAO F, MEI D H, WANG Y L, et al. Selective catalytic reduction over Cu/SSZ-13: linking homo- and heterogeneous catalysis[J]. Journal of the American Chemical Society, 2017, 139(13): 4935-4942. doi: 10.1021/jacs.7b01128
|
[32] |
SONG J, WANG Y L, WALTER E D, et al. Toward rational design of Cu/SSZ-13 selective catalytic reduction catalysts: implications from atomic-level understanding of hydrothermal stability[J]. ACS Catalysis, 2017, 7(12): 8214-8227. doi: 10.1021/acscatal.7b03020
|
[33] |
陈梦阳. 金属离子改性Cu-SSZ-13分子筛及其NH3-SCR催化性能研究[D]. 长春: 吉林大学, 2022.
|
[34] |
PIETERSE J A Z, PIRNGRUBER G D, VAN B J A, et al. Hydrothermal stability of Fe-ZSM-5 and Fe-BEA prepared by wet ion-exchange for N2O decomposition[J]. Applied Catalysis B-Environmental, 2007, 71(1-2): 16-22. doi: 10.1016/j.apcatb.2006.08.011
|
[35] |
ANDONOVA S, TAMM S, MONTREUIL C, et al. The effect of iron loading and hydrothermal aging on one-pot synthesized Fe/SAPO-34 for ammonia SCR[J]. Applied Catalysis B-Environmental, 2016, 180: 775-787. doi: 10.1016/j.apcatb.2015.07.007
|
[36] |
SHI X Y, LIU F D, SHAN W P, et al. Hydrothermal deactivation of Fe-ZSM-5 prepared by different methods for the selective catalytic reduction of NOx with NH3[J]. Chinese Journal of Catalysis, 2012, 33(3): 454-464.
|
[37] |
修东超. 金属离子改性Fe-Beta分子筛在NH3-SCR反应中的水热稳定性研究[D]. 大连: 大连理工大学, 2021.
|
[38] |
JIANG S Y, ZHOU R X. Ce doping effect on performance of the Fe/β catalyst for NOx reduction by NH3[J]. Fuel Processing Technology, 2015, 133: 220-226. doi: 10.1016/j.fuproc.2015.02.004
|
[39] |
SHWAN S, NEDYALKOVA R, JANSSON J, et al. Hydrothermal stability of Fe-BEA as an NH3-SCR catalyst[J]. Industrial & Engineering Chemistry Research, 2012, 51(39): 12762-12772.
|
[40] |
SHI J, ZHANG Y, ZHANG Z, et al. Water promotion mechanism on the NH3-SCR over Fe-BEA catalyst[J]. Catalysis Communications, 2018, 115: 59-63. doi: 10.1016/j.catcom.2018.07.012
|
[41] |
KOVARIK L, WASHTON N M, KUKKADAPU R, et al. Transformation of active sites in Fe/SSZ-13 SCR catalysts during hydrothermal aging: a spectroscopic, microscopic, and kinetics study[J]. Acs Catalysis, 2017, 7(4): 2458-2470. doi: 10.1021/acscatal.6b03679
|
[42] |
WANG J, FAN D, YU T, et al. Improvement of low-temperature hydrothermal stability of Cu/SAPO-34 catalysts by Cu2+ species[J]. Journal of Catalysis, 2015, 322: 84-90. doi: 10.1016/j.jcat.2014.11.010
|
[43] |
张宇博. Ce改性Fe-Beta催化剂NH3选择性催化还原NOx的性能与机理研究[D]. 镇江: 江苏大学, 2023.
|
[44] |
DEVI T G, KANNAN M P. X-ray diffraction (XRD) studies on the chemical states of some metal species in cellulosic chars and the Ellingham diagrams[J]. Energy & Fuels, 2007, 21(2): 596-601.
|
[45] |
ZHU L, ZHANG L, QU H, et al. A study on chemisorbed oxygen and reaction process of Fe-CuOx/ZSM-5 via ultrasonic impregnation method for low-temperature NH3-SCR[J]. Journal of Molecular Catalysis a-Chemical, 2015, 409: 207-215. doi: 10.1016/j.molcata.2015.08.029
|
[46] |
DU H Y, YANG S, LI K, et al. Study on the performance of the Zr-modified Cu-SSZ-13 catalyst for low-temperature NH3-SCR[J]. ACS Omega, 2022, 7(49): 45144-45152. doi: 10.1021/acsomega.2c05582
|
[47] |
FENG X, CAO Y, LAN L, et al. The promotional effect of Ce on CuFe/beta, monolith catalyst for selective catalytic reduction of NOx by ammonia[J]. Chemical Engineering Journal, 2016, 302: 697-706. doi: 10.1016/j.cej.2016.05.118
|
[48] |
赵菲琳, 曾洁, 校融, 等. 镧掺杂Fe-beta分子筛CO选择性催化还原N2O反应性能[J]. 中国环境科学, 2023, 43(3): 1044-1052.
|
[49] |
REN L L, ZHANG T. Reduction of NO with methane over Fe/ZSM-5 catalysts[J]. Chinese Chemical Letters, 2010, 21(6): 674-677. doi: 10.1016/j.cclet.2010.02.001
|