[1] |
COURT V, MCISAAC F. A representation of the world population dynamics for integrated assessment models[J]. Environmental Modeling & Assessment, 2020, 25(5): 611-632.
|
[2] |
POPP A, CALVIN K, FUJIMORI S, et al. Land-use futures in the shared socio-economic pathways[J]. Global Environmental Change-Human and Policy Dimensions, 2017, 42: 331-345. doi: 10.1016/j.gloenvcha.2016.10.002
|
[3] |
ALEXANDER P, BROWN C, ARNETH A, et al. Losses, inefficiencies and waste in the global food system[J]. Agricultural Systems, 2017, 153: 190-200. doi: 10.1016/j.agsy.2017.01.014
|
[4] |
BOUWMAN A F, BEUSEN A H W, BILLEN G. Human alteration of the global nitrogen and phosphorus soil balances for the period 1970-2050[J]. Global Biogeochemical Cycles, 2009, 23(4).
|
[5] |
EZEH A C, BONGAARTS J, MBERU B. Global population trends and policy options[J]. Lancet, 2012, 380(9837): 142-148. doi: 10.1016/S0140-6736(12)60696-5
|
[6] |
ERISMEN J W, SUTTON M A, GALLOWAY J, et al. How a century of ammonia synthesis changed the world[J]. Nature Geoscience, 2008, 1(10): 636-639. doi: 10.1038/ngeo325
|
[7] |
XIANG S Y, LIU Y H, ZHANG G M, et al. New progress of ammonia recovery during ammonia nitrogen removal from various wastewaters[J]. World Journal of Microbiology & Biotechnology, 2020, 36(144).
|
[8] |
BENAKOVA A, JOHANIDESOVA I, KELBICH P, et al. The increase of process stability in removing ammonia nitrogen from wastewater[J]. Water Science And Technology, 2018, 77(9/10): 2213-2219.
|
[9] |
ZHANG S P, LIU Z R. Advances in the biological fixation of carbon dioxide by microalgae[J]. Journal of Chemical Technology and Biotechnology, 2021, 96(6): 1475-1495. doi: 10.1002/jctb.6714
|
[10] |
SENBOKU H. Electrochemical Fixation of Carbon Dioxide: Synthesis of Carboxylic Acids[J]. Chemical Record, 2021, 21(9): 2354-2374. doi: 10.1002/tcr.202100081
|
[11] |
FAN X Y, ZHANG X M, ZHAO G H, et al. Aerobic hydrogen-oxidizing bacteria in soil: from cells to ecosystems[J]. Reviews in Environmental Science and Bio-Technology, 2022, 21(4): 877-904. doi: 10.1007/s11157-022-09633-0
|
[12] |
HU X N, VANDAMME P, BOON N. Co-cultivation enhanced microbial protein production based on autotrophic nitrogen-fixing hydrogen-oxidizing bacteria[J]. Chemical Engineering Journal, 2022, 429: 132535. doi: 10.1016/j.cej.2021.132535
|
[13] |
ZHANG W, NIU Y, LI Y X, et al. Enrichment of hydrogen-oxidizing bacteria with nitrate recovery as biofertilizers in the mixed culture[J]. Bioresource Technology, 2020, 313: 123645. doi: 10.1016/j.biortech.2020.123645
|
[14] |
陶虎春, 谢勇, 张丽娟, 等. 一株氢氧化细菌的生长条件及其对不同氮源利用的研究[J]. 北京大学学报(自然科学版), 2021, 57(4): 756-764.
|
[15] |
王瑾, 王喆之, 董忠民. 土壤氢氧化细菌促进作物生长机理研究进展[J]. 应用与环境生物学报, 2012, 18(5): 853-861.
|
[16] |
MATASSA S, VERSTRAETE W, PIKAAR I, et al. Autotrophic nitrogen assimilation and carbon capture for microbial protein production by a novel enrichment of hydrogen-oxidizing bacteria[J]. Water Research, 2016, 101: 137-146. doi: 10.1016/j.watres.2016.05.077
|
[17] |
VOLOVA T G, BARASHKOV V A. Characteristics of Proteins Synthesized by Hydrogen-Oxidizing Microorganisms[J]. Applied Biochemistry and Microbiology, 2010, 46(6): 574-579. doi: 10.1134/S0003683810060037
|
[18] |
刘延峰, 邓梦婷, 陈坚. 微生物替代蛋白生物制造: 进展与展望[J]. 中国食品学报, 2022, 22(6): 1-5.
|
[19] |
HARPER S R, POHLAND FG. Recent developments in hydrogen management during anaerobic biological wastewater treatment. Biotechnol Bioeng 1986;28(4): 585-602.
|
[20] |
LI K, GONG H, LIU Y, et al. Hydrogenotrophic methanogenic granular sludge formation for highly efficient transforming hydrogen to CH4[J]. Journal of Environmental Management, 2022, 303: 113999. doi: 10.1016/j.jenvman.2021.113999
|
[21] |
李孝越, 王悦, 贾佩, 李雅洁, 陈佳琪, 金丽军, 王雯, 杨紫怡. 微生物燃料电池回收氨氮合成微生物蛋白研究[J]. 中国环境科学, 2023, 43(3): 1152-1159.
|
[22] |
ONODA Y, HIKOSAKA K, HIROSE T. Seasonal change in the balance between capacities of RuBP carboxylation and RuBP regeneration affects CO2 response of photosynthesis in Polygonum cuspidatum[J]. Journal of Experiment Botany, 2005, 56(412): 755-63. doi: 10.1093/jxb/eri052
|
[23] |
KIM B W, CHANG H N, KIM I K, et al. Growth kinetics of the photosynthetic bacterium Chlorobium thiosulfatophilum in a fed-batch reactor[J]. Biotechnology and Bioengineering, 1992, 40(5): 583-592. doi: 10.1002/bit.260400505
|
[24] |
LIN L, HUAANG H, ZHANG X, et al. Hydrogen-oxidizing bacteria and their applications in resource recovery and pollutant removal[J]. Science of the Total Environment, 2022, 835: 155559. doi: 10.1016/j.scitotenv.2022.155559
|
[25] |
BURGDORF T, LENZ O, BUHRKE T, et al. [NiFe]-Hydrogenases of ralstonia eutropha H16: Modular Enzymes for oxygen-tolerant biological hydrogen oxidation[J]. Journal of Molecular Microbiology and Biotechnology, 2006, 10(2/3/4): 181-196.
|
[26] |
HU X N, KERCKHOFF M, GHESQUIEER J, et al. Microbial rotein out of thin Air: Fixation of nitrogen gas by an autotrophic hydrogen-oxidizing bacterial enrichment[J]. Environmental Science & Technology, 2020, 54(6): 3609-3617.
|