[1] 刘晏君, 吕卫光, 白娜玲, 等. 稻鳝生态种养不同施肥处理对土壤理化及微生物性状的影响[J]. 土壤通报, 2023, 54(6): 1384-1391. LIU Y J, LV W G, BAI N L, et al. Effects of different fertilization treatments of ecological rice-eel co-culture on soil physicochemical and microbial properties[J]. Chinese Journal of Soil Science, 2023, 54(6): 1384-1391 (in Chinese).
[2] 李文博, 刘少君, 叶新新, 等. 稻田综合种养模式对土壤生态系统的影响研究进展[J]. 生态与农村环境学报, 2021, 37(10): 1292-1300. LI W B, LIU S J, YE X X, et al. Effects of the co-culture of rice and aquatic animals on soil eco-system: A review[J]. Journal of Ecology and Rural Environment, 2021, 37(10): 1292-1300 (in Chinese).
[3] SHI C, ZHANG Q W, YU B W. Higher improvement in soil health by animal-sourced than plant-sourced organic materials through optimized substitution[J]. Agriculture, Ecosystems & Environment, 2024, 363: 108875.
[4] 杜彩艳, 鲁海燕, 熊艳竹, 等. 连续两年沼液与化肥配施对桃生长及土壤理化性质的影响[J]. 中国农业科技导报, 2023, 25(8): 165-175. DU C Y, LU H Y, XIONG Y Z, et al. Effects of combined application of biogas slurry and chemical fertilizer on peach growth and soil physical and chemical properties for two consecutive years[J]. Journal of Agricultural Science and Technology, 2023, 25(8): 165-175 (in Chinese).
[5] 柴彦君, 张睿, 江建锋, 等. 沼液化肥配施对芦笋地土壤肥力及芦笋品质的影响[J]. 农业工程学报, 2023, 39(5): 120-127. CHAI Y J, ZHANG R, JIANG J F, et al. Effects of the combined biogas slurry with chemical fertilizer on soil fertility and Asparagus quality in field[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(5): 120-127 (in Chinese).
[6] 金柯达, 王绍轩, 胡宝娥, 等. 沼肥施用量对上海青产量及土壤理化特性的影响[J]. 中国沼气, 2022, 40(6): 50-56. JIN K D, WANG S X, HU B E, et al. Effects of biogas fertilizer application rate on Shanghai cabbage yield and soil physicochemical properties[J]. China Biogas, 2022, 40(6): 50-56 (in Chinese).
[7] 滕云飞, 尚斌, 陶秀萍. 猪粪沼液对设施基质栽培番茄的营养效应[J]. 中国农业科学, 2023, 56(19): 3869-3878. TENG Y F, SHANG B, TAO X P. Nutritional effects of liquid digestate on tomatoes grown in facility substrates[J]. Scientia Agricultura Sinica, 2023, 56(19): 3869-3878 (in Chinese).
[8] 刘强, 袁延飞, 刘一帆, 等. 生物炭对盐渍化土壤改良的研究进展[J]. 地球科学进展, 2022, 37(10): 1005-1024. doi: 10.11867/j.issn.1001-8166.2022.050 LIU Q, YUAN Y F, LIU Y F, et al. Research progress: The application of biochar in the remediation of salt-affected soils[J]. Advances in Earth Science, 2022, 37(10): 1005-1024 (in Chinese). doi: 10.11867/j.issn.1001-8166.2022.050
[9] 刘红梅, 李睿颖, 高晶晶, 等. 保护性耕作对土壤团聚体及微生物学特性的影响研究进展[J]. 生态环境学报, 2020, 29(6): 1277-1284. LIU H M, LI R Y, GAO J J, et al. Research progress on the effects of conservation tillage on soil aggregates and microbiological characteristics[J]. Ecology and Environmental Sciences, 2020, 29(6): 1277-1284 (in Chinese).
[10] XIA L L, LAM S K, CHEN D L, et al. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution?A meta-analysis[J]. Global Change Biology, 2017, 23(5): 1917-1925. doi: 10.1111/gcb.13455
[11] FANG H, WANG H F, CAI L, et al. Prevalence of antibiotic resistance genes and bacterial pathogens in long-term manured greenhouse soils as revealed by metagenomic survey[J]. Environmental Science & Technology, 2015, 49(2): 1095-1104.
[12] LIU S W, ZHANG Y J, ZONG Y J, et al. Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: A meta-analysis[J]. GCB Bioenergy, 2016, 8(2): 392-406. doi: 10.1111/gcbb.12265
[13] 刘茗, 曹林桦, 刘彩霞, 等. 亚热带4种典型森林植被土壤固碳细菌群落结构及数量特征[J]. 土壤学报, 2021, 58(4): 1028-1039. LIU M, CAO L H, LIU C X, et al. Characterization of population and community structure of carbon-sequestration bacteria in soils under four types of forest vegetations typical of subtropical zone[J]. Acta Pedologica Sinica, 2021, 58(4): 1028-1039 (in Chinese).
[14] 杨玲, 张艺, 钟俊杰, 等. 不同调酸剂对种植玉米红壤微生物群落的影响[J]. 农业环境科学学报, 2024, 43(3): 609-616. YANG L, ZHANG Y, ZHONG J J, et al. Effects of different acid modulators on the microbial communities in maize planting red soil[J]. Journal of Agro-Environment Science, 2024, 43(3): 609-616 (in Chinese).
[15] 张家鹏, 李为萍, 池曌男, 等. 地下滴灌对向日葵根区土壤微环境及细菌氮转化功能基因的影响[J]. 环境科学学报, 2024, 44(5): 474-485. ZHANG J P, LI W P, CHI Z N, et al. Effects of subsurface drip irrigation on soil microenvironment and functional genes for bacterial nitrogen transformation in sunflower root zone[J]. Acta Scientiae Circumstantiae, 2024, 44(5): 474-485 (in Chinese).
[16] 刘倩, 陈晓, 李彦澄, 等. 湖泊沉积物的氮代谢微生物、功能基因及代谢途径分析: 以贵州省红枫湖为例[J]. 环境科学, 2024, 45(10): 6086-6095. LIU Q, CHEN X, LI Y C, et al. Analysis of nitrogen metabolism microorganisms, functional genes and metabolic pathways in lake sediments: A case study of Hongfeng Lake in Guizhou Province[J]. Environmental Science, 2024, 45(10): 6086-6095 (in Chinese).
[17] 韩磊, 胡盎, 任明磊, 等. 湖泊微生物群落及其介导的碳循环过程[J]. 生命科学, 2023, 35(12): 1613-1629. HAN L, HU A, REN M L, et al. Lake microbial communities and their mediated carbon cycling processes[J]. Chinese Bulletin of Life Sciences, 2023, 35(12): 1613-1629 (in Chinese).
[18] 王小利, 王淑兰. 基于KEGG的碳固定和氮代谢通路土壤微生物组筛选[J]. 农业机械学报, 2020, 51(8): 303-310. WANG X L, WANG S L. Soil microbiome screening for carbon fixation and nitrogen metabolism pathways based on KEGG database[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(8): 303-310 (in Chinese).
[19] 李凯凯, 张丙昌, 赵康, 等. 毛乌素沙地固碳功能菌群落随生物结皮发育阶段的演变特征[J]. 生态学报, 2024, 44(3): 1177-1190. LI K K, ZHANG B C, ZHAO K, et al. Succession of carbon-fixing microbial community in different stages of biological soil crusts in the Mu Us Sandy Land[J]. Acta Ecologica Sinica, 2024, 44(3): 1177-1190 (in Chinese).
[20] 宋达成, 赵文智, 李广宇, 等. 退耕对民勤绿洲土壤碳氮循环关键微生物及功能基因的影响[J]. 生态学报, 2024, 44(2): 805-818. SONG D C, ZHAO W Z, LI G Y, et al. Effects of abandoned farmland on key microorganisms and functional genes of soil carbon and nitrogen cycles in Minqin Oasis[J]. Acta Ecologica Sinica, 2024, 44(2): 805-818 (in Chinese).
[21] 王彬浩, 吴愉萍, 陈彦博, 等. 秸秆还田对土壤微生物功能基因和功能类群的影响[J]. 浙江大学学报(农业与生命科学版), DOI:10.3785/j.issn.1008-9209.2023.07.172. WANG B H, WU Y P, CHEN Y B, et al. Effects of straw returning on soil microbial functional genes and functional groups[J]. Journal of ZheJiang University (Agriculture and Life Sciences), DOI:10.3785/j.issn.1008-9209.2023.07.172 (in Chinese).
[22] 舒洋, 陈金平, 丁兆华, 等. 林火强度对兴安落叶松林土壤氮循环功能基因的影响[J]. 草地学报, 2024, 32(3): 726-735. SHU Y, CHEN J P, DING Z H, et al. Effects of forest fire intensity on functional genes of soil nitrogen cycling in Larix gmelinii[J]. Acta Agrestia Sinica, 2024, 32(3): 726-735 (in Chinese).
[23] 王宇峰, 孟会生, 李廷亮, 等. 培肥措施对复垦土壤微生物碳氮代谢功能多样性的影响[J]. 农业工程学报, 2020, 36(24): 81-90. WANG Y F, MENG H S, LI T L, et al. Effects of fertilization regime on the functional diversity of microbial carbon and nitrogen metabolism in reclaimed soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(24): 81-90 (in Chinese).
[24] 马慧霞, 张桥, 陈会巧, 等. 长期有机培肥对南方红壤区稻田土壤碳循环功能基因的影响[J]. 南方农业学报, 2023, 54(5): 1405-1416. MA H X, ZHANG Q, CHEN H Q, et al. Effects of long-term organic fertilization on the functional genes of carbon cycle in paddy soils[J]. Journal of Southern Agriculture, 2023, 54(5): 1405-1416 (in Chinese).
[25] 赵姣, 马静, 朱燕峰, 等. 植被类型对黄土高原露采矿山复垦土壤碳循环功能基因的影响[J]. 环境科学, 2023, 44(6): 3386-3395. ZHAO J, MA J, ZHU Y F, et al. Effects of vegetation types on carbon cycle functional genes in reclaimed soil from open pit mines in the Loess Plateau[J]. Environmental Science, 2023, 44(6): 3386-3395 (in Chinese).
[26] PENG S M, LIU W, XU G, et al. A meta-analysis of soil microbial and physicochemical properties following native forest conversion[J]. CATENA, 2021, 204: 105447. doi: 10.1016/j.catena.2021.105447
[27] LI H, YE D D, WANG X G, et al. Soil bacterial communities of different natural forest types in Northeast China[J]. Plant and Soil, 2014, 383(1): 203-216.
[28] CHEN J, SINSABAUGH R L. Linking microbial functional gene abundance and soil extracellular enzyme activity: Implications for soil carbon dynamics[J]. Global Change Biology, 2021, 27(7): 1322-1325. doi: 10.1111/gcb.15506
[29] ZHAO M X, XUE K, WANG F, et al. Microbial mediation of biogeochemical cycles revealed by simulation of global changes with soil transplant and cropping[J]. The ISME Journal, 2014, 8(10): 2045-2055. doi: 10.1038/ismej.2014.46
[30] 魏甲彬, 李有清. 生物炭添加对根际土壤微生物群落影响研究进展[J]. 湖南生态科学学报, 2023, 10(2): 101-108. WEI J B, LI Y Q. Research progress on the effects of biochar addition on rhizosphere soil microbial communities[J]. Journal of Hunan Ecological Science, 2023, 10(2): 101-108 (in Chinese).
[31] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科学技术出版社, 2000. LU R K. Methods of soil agrochemical analysis[M]. China Agricultural Science and Technology Press, 2000(in Chinese).
[32] ZHENG B X, ZHU Y G, SARDANS J, et al. QMEC: A tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling[J]. Science China Life Sciences, 2018, 61(12): 1451-1462. doi: 10.1007/s11427-018-9364-7
[33] CHEN Q L, DING J, LI C Y, et al. Microbial functional attributes, rather than taxonomic attributes, drive top soil respiration, nitrification and denitrification processes[J]. Science of the Total Environment, 2020, 734: 139479. doi: 10.1016/j.scitotenv.2020.139479
[34] 覃潇敏, 潘浩男, 环秀菊, 等. 生物炭对菠萝连作土壤微生物学特性及其心腐病的影响[J]. 中国土壤与肥料, 2024(2): 65-71. QIN X M, PAN H N, HUAN X J, et al. Effects of biochar on soil microbial characteristics of pineapple and the heart rot under continuous cropping[J]. Soil and Fertilizer Sciences in China, 2024(2): 65-71 (in Chinese).
[35] 王强, 耿增超, 许晨阳, 等. 施用生物炭对塿土土壤微生物代谢养分限制和碳利用效率的影响[J]. 环境科学, 2020, 41(5): 2425-2433. WANG Q, GENG Z C, XU C Y, et al. Effects of biochar application on soil microbial nutrient limitations and carbon use efficiency in Lou soil[J]. Environmental Science, 2020, 41(5): 2425-2433 (in Chinese).
[36] 温云杰, 张纪涛, 李琳, 等. 沼液配施化肥对大葱产量和土壤养分、微生物及酶活性的影响[J]. 中国生态农业学报(中英文), 2024, 32(1): 95-105. WEN Y J, ZHANG J T, LI L, et al. Effects of biogas slurry combined with chemical fertilizer on Allium fistulosum yields, soil nutrients, microorganisms, and enzymes activities[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 95-105 (in Chinese).
[37] LIANG P Y, YU H O, HUANG J L, et al. The review on adsorption and removing ammonia nitrogen with biochar on its mechanism[J]. MATEC Web of Conferences, 2016, 67: 07006. doi: 10.1051/matecconf/20166707006
[38] 杨雪, 曹霞, 白冰, 等. 根施生物炭对设施连作土壤氮素转化及黄瓜幼苗根系氮代谢的影响[J]. 应用生态学报, 2024, 35(3): 713-720. YANG X, CAO X, BAI B, et al. Effects of root-applied biochar on soil nitrogen transformation and root nitrogen metabolism of cucumber seedlings in facility continuous cropping soils[J]. Chinese Journal of Applied Ecology, 2024, 35(3): 713-720 (in Chinese).
[39] 姚玲丹, 程广焕, 王丽晓, 等. 施用生物炭对土壤微生物的影响[J]. 环境化学, 2015, 34(4): 697-704. YAO L D, CHENG G H, WANG L X, et al. Effects of biochar application to microorganisms in soil[J]. Environmental Chemistry, 2015, 34(4): 697-704 (in Chinese).
[40] 李钰飞, 许俊香, 刘本生, 等. 不同来源沼液对土壤微生物群落碳代谢的影响[J]. 中国生态农业学报(中英文), 2021, 29(11): 1921-1930. LI Y F, XU J X, LIU B S, et al. Effects of different biogas slurries on soil microbial carbon metabolism[J]. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1921-1930 (in Chinese).
[41] 陈健, 卢伟伟, 杜娅茹, 等. 生物质炭和氮肥对马尾松人工林土壤微生物群落结构和酶活性的影响[J]. 环境科学学报, 2024, 44(4): 333-343. CHEN J, LU W W, DU Y R, et al. Effects of biochar and nitrogen fertilizer on soil microbial community structure and enzyme activity in a Pinus massoniana plantation[J]. Acta Scientiae Circumstantiae, 2024, 44(4): 333-343 (in Chinese).
[42] 唐存柳, 靳泽文, 姚光伟, 等. 生物质炭-沼液联合施用对调控氮循环功能基因促进氮素增效的影响[J]. 环境化学, 2023, 42(8): 2843-2852. doi: 10.7524/j.issn.0254-6108.2015.04.2014072802 TANG C L, JIN Z W, YAO G W, et al. Effects of combined application of biochar and biogas slurry on regulating nitrogen cycle function genes and promoting nitrogen efficiency[J]. Environmental Chemistry, 2023, 42(8): 2843-2852 (in Chinese). doi: 10.7524/j.issn.0254-6108.2015.04.2014072802
[43] LU W W, DING W X, ZHANG J H, et al. Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: A negative priming effect[J]. Soil Biology and Biochemistry, 2014, 76: 12-21. doi: 10.1016/j.soilbio.2014.04.029
[44] 刘银秀, 池永清, 董越勇, 等. 不同沼液施用年限土壤养分含量和微生物群落结构差异[J]. 植物营养与肥料学报, 2023, 29(3): 483-495. LIU Y X, CHI Y Q, DONG Y Y, et al. Variation of nutrient content and microbial community in soils under different application years of biogas slurry[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(3): 483-495 (in Chinese).
[45] 陈会巧, 马慧霞, 张桥, 等. 长期培肥降低稻田土壤硝化和反硝化细菌功能基因丰度并减缓氮素周转[J]. 植物营养与肥料学报, 2023, 29(9): 1630-1642. doi: 10.11674/zwyf.2023098 CHEN H Q, MA H X, ZHANG Q, et al. Long-term fertilization reduces nitrifying and denitrifying functional gene abundance and slows down the nitrogen recycle in paddy soils[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(9): 1630-1642 (in Chinese). doi: 10.11674/zwyf.2023098
[46] 郑一玲, 范栩妙, 钟哲伦, 等. 生物质炭-沼液配施条件下旱地红壤碳氮循环功能基因丰度主控因子与耦合关系[J]. 农业资源与环境学报, 2024, 41(4): 835-845. ZHENG Y L, FAN X M, ZHONG Z L, et al. The main controlling factors and coupling relationship of functional gene abundance in carbon and nitrogen cycling in dryland red soil with biochar and biogas slurry co-application[J]. Journal of Agricultural Resources and Environment, 2024, 41(4): 835-845 (in Chinese).
[47] 何瑞鹏, 徐婉茹, 刘一萌, 等. 若尔盖沙化土地治理土壤微生物群落与功能基因比较研究[J]. 微生物学报, 2024, 64(6): 2071-2090. HE R P, XU W R, LIU Y M, et al. Comparison of soil microbial communities and functional genes in sandy land management of Zoige[J]. Acta Microbiologica Sinica, 2024, 64(6): 2071-2090 (in Chinese).