[1] BROWNE A J, CHIPETA M G, HAINES-Woodhouse G, et al. Global antibiotic consumption and usage in humans, 2000-18: A spatial modelling study[J]. The Lancet Planetary Health, 2021, 5(12): e893-e904. doi: 10.1016/S2542-5196(21)00280-1
[2] COLLABORATORS A R. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis[J]. Lancet, 2022, 399(10325): 629-655. doi: 10.1016/S0140-6736(21)02724-0
[3] O’NEILL J. Antimicrobial resistance : Tackling a crisis for the health and wealth of nations[J]. Review on Antimicrobial Resistance, 2016(December): 1-16.
[4] HU Y F, GAO G F, ZHU B L. The antibiotic resistome: Gene flow in environments, animals and human beings[J]. Frontiers of Medicine, 2017, 11(2): 161-168. doi: 10.1007/s11684-017-0531-x
[5] 刘艳艳, 李亚胜, 余梁, 等. 2023年安徽省细菌耐药监测(HuiNet)结果[J]. 中华临床感染病杂志, 2024, 17(2): 113-125. doi: 10.3760/cma.j.issn.1674-2397.2024.02.004 LIU Y Y, LI Y S, YU L, et al. HuiNet report of 2023: The distribution and antimicrobial resistance profile of clinical bacterial isolates in Anhui Results of Antimicrobial Resistance Surveillance in Anhui Province (HuiNet) in 2023[J]. Chinese Journal of Clinical Infectious Diseases, 2024, 17(2): 113-125. (in Chinese) doi: 10.3760/cma.j.issn.1674-2397.2024.02.004
[6] ZHANG S, HUANG J, ZHAO Z, et al. Hospital wastewater as a reservoir for antibiotic resistance genes: A meta-analysis[J]. Frontiers in Public Health, 2020, 8: 574968. doi: 10.3389/fpubh.2020.574968
[7] ZHENG H S, GUO W Q, WU Q L, et al. Electro-peroxone pretreatment for enhanced simulated hospital wastewater treatment and antibiotic resistance genes reduction[J]. Environment International, 2018, 115: 70-78. doi: 10.1016/j.envint.2018.02.043
[8] DODD M C. Potential impacts of disinfection processes on elimination and deactivation of antibiotic resistance genes during water and wastewater treatment[J]. Journal of Environmental Monitoring, 2012, 14(7): 1754-1771. doi: 10.1039/c2em00006g
[9] SO J H, KIM J, BAE I K, et al. Dissemination of multidrug-resistant Escherichia coli in Korean veterinary hospitals[J]. Diagnostic Microbiology and Infectious Disease, 2012, 73(2): 195-199. doi: 10.1016/j.diagmicrobio.2012.03.010
[10] MBANGA J, KODZAI N P, OOSTHUYSEN W F. Antibiotic resistance, pathotypes, and pathogen-host interactions in Escherichia coli from hospital wastewater in Bulawayo, Zimbabwe[J]. PLoS One, 2023, 18(3): e0282273. doi: 10.1371/journal.pone.0282273
[11] AKYA A, CHEGENELORESTANI R, SHAHVAISI-ZADEH J, et al. Antimicrobial resistance of Staphylococcus aureus isolated from hospital wastewater in Kermanshah, Iran[J]. Risk Management and Healthcare Policy, 2020, 13: 1035-1042. doi: 10.2147/RMHP.S261311
[12] JANNATI E, KHADEMI F, MANOUCHEHRIFAR M, et al. Antibiotic resistance and virulence potentials of E. faecalis and E. faecium in hospital wastewater: A case study in ardabil, Iran[J]. Journal of Water and Health, 2023, 21(9): 1277-1290. doi: 10.2166/wh.2023.147
[13] GIRIJAN S K, PILLAI D. Identification and characterization of vancomycin-resistant Staphylococcus aureus in hospital wastewaters: Evidence of horizontal spread of antimicrobial resistance[J]. Journal of Water and Health, 2021, 19(5): 785-795. doi: 10.2166/wh.2021.117
[14] MAHESHWARI M, YASER N H, NAZ S, et al. Emergence of ciprofloxacin-resistant extended-spectrum β-lactamase-producing enteric bacteria in hospital wastewater and clinical sources[J]. Journal of Global Antimicrobial Resistance, 2016, 5: 22-25. doi: 10.1016/j.jgar.2016.01.008
[15] MANDAL S M, GHOSH A K, PATI B R. Dissemination of antibiotic resistance in methicillin-resistant Staphylococcus aureus and vancomycin-resistant S aureus strains isolated from hospital effluents[J]. American Journal of Infection Control, 2015, 43(12): e87-e88. doi: 10.1016/j.ajic.2015.08.015
[16] ALAM M Z, AQIL F, AHMAD I, et al. Incidence and transferability of antibiotic resistance in the enteric bacteria isolated from hospital wastewater[J]. Brazilian Journal Microbiology, 2014, 44(3): 799-806.
[17] MANIK R K, MAHMUD Z, MISHU I D, et al. Multidrug resistance profiles and resistance mechanisms to β-lactams and fluoroquinolones in bacterial isolates from hospital wastewater in Bangladesh[J]. Current Issues in Molecular Biology, 2023, 45(8): 6485-6502. doi: 10.3390/cimb45080409
[18] LIEN L T Q, LAN P T, CHUC N T K, et al. Antibiotic resistance and antibiotic resistance genes in Escherichia coli isolates from hospital wastewater in Vietnam[J]. International Journal of Environmental Research and Public Health, 2017, 14(7): 699. doi: 10.3390/ijerph14070699
[19] SIRI Y, BUMYUT A, PRECHA N, et al. Multidrug antibiotic resistance in hospital wastewater as a reflection of antibiotic prescription and infection cases[J]. Science of the Total Environment, 2024, 908: 168453. doi: 10.1016/j.scitotenv.2023.168453
[20] ROULOVÁ N, MOT’KOVÁ P, BROŽKOVÁ I, et al. Antibiotic resistance of Pseudomonas aeruginosa isolated from hospital wastewater in the Czech Republic[J]. Journal of Water and Health, 2022, 20(4): 692-701. doi: 10.2166/wh.2022.101
[21] GÜNDOĞDU A, JENNISON A V, SMITH H V, et al. Extended-spectrum β-lactamase producing Escherichia coli in hospital wastewaters and sewage treatment plants in Queensland, Australia[J]. Canadian Journal of Microbiology, 2013, 59(11): 737-745. doi: 10.1139/cjm-2013-0515
[22] ORY J, BRICHEUX G, TOGOLA A, et al. Ciprofloxacin residue and antibiotic-resistant biofilm bacteria in hospital effluent[J]. Environmental Pollution, 2016, 214: 635-645. doi: 10.1016/j.envpol.2016.04.033
[23] 李超, 鲁建江, 童延斌, 等. 乌鲁木齐市医院医疗废水中细菌对抗生素的抗性水平[J]. 环境与职业医学, 2016, 33(8): 758-762. LI C, LU J J, TONG Y B, et al. Antibiotic resistance levels of pathogens isolated from medical wastewater in Urumqi[J]. Environmental and Occupational Medicine, 2016, 33(8): 758-762(in Chinese)
[24] LI W W, YANG Z J, HU J M, et al. Evaluation of culturable ‘last-resort’ antibiotic resistant pathogens in hospital wastewater and implications on the risks of nosocomial antimicrobial resistance prevalence[J]. Journal of Hazardous Materials, 2022, 438: 129477. doi: 10.1016/j.jhazmat.2022.129477
[25] HU Z M, CHEN W Y, GUO G L, et al. An Escherichia coli isolate from hospital sewage carries blaNDM-1 and blaoxa-10[J]. Archives of Microbiology, 2021, 203(7): 4427-4432. doi: 10.1007/s00203-021-02431-2
[26] 王旭, 王秀红, 任清明, 等. 北京地区医院污水中产NDM-1不动杆菌检测和抗生素敏感性分析[J]. 中国公共卫生, 2015, 31(8): 1083-1086. doi: 10.11847/zgggws2015-31-08-30 WANG X, WANG X H, REN Q M, et al. Detection and antibiotic resistance analysis of NDM-1 producing Acinetobacter isolated from sewage of hospitals in Beijing[J]. Chinese Journal of Public Health, 2015, 31(8): 1083-1086(in Chinese) doi: 10.11847/zgggws2015-31-08-30
[27] 刘铭威. 医院污水中耐碳青霉烯类肺炎克雷伯菌耐药性、毒力特征研究[D]. 吉林农业大学, 2023. LIU M W. Study on drug resistance and virulence characteristics of carbapenem-resistant Klebsiella pneumoniae in hospital sewage[D]. Changchun: Jilin Agricultural University, 2023 (in Chinese).
[28] 彭召红, 宋建梅, 王旭, 等. 北京某医院2018—2022年耐碳青霉烯类革兰阴性杆菌的临床分布及耐药菌变迁[J]. 标记免疫分析与临床, 2024, 31(4): 602-608. PENG Z H, SONG J M, WANG X, et al. The clinical distribution and changes of drug resistance for carbapenem-resistant organism in in Beijing tertiary hospital from 2018 to 2022[J]. Labeled Immunoassays and Clinical Medicine, 2024, 31(4): 602-608 (in Chinese).
[29] YAN Z L, JU X Y, ZHANG Y Y, et al. Analysis of the transmission chain of carbapenem-resistant Enterobacter cloacae complex infections in clinical, intestinal and healthcare settings in Zhejiang province, China (2022-2023)[J]. Science of the Total Environment, 2024, 920: 170635. doi: 10.1016/j.scitotenv.2024.170635
[30] ODIH E E, SUNMONU G T, OKEKE I N, et al. NDM-1- and OXA-23-producing Acinetobacter baumannii in wastewater of a Nigerian hospital[J]. Microbiology Spectrum, 2023, 11(6): e0238123. doi: 10.1128/spectrum.02381-23
[31] BATISTA M P B, CAVALCANTE F S, ALVES CASSINI S T, et al. Diversity of bacteria carrying antibiotic resistance genes in hospital raw sewage in Southeastern Brazil[J]. Water Science and Technology, 2023, 87(1): 239-250. doi: 10.2166/wst.2022.427
[32] MONTENEGRO K, FLORES C, NASCIMENTO AP A, et al. Occurrence of Klebsiella pneumoniae ST244 and ST11 extensively drug-resistant producing KPC, NDM, OXA-370 in wastewater, Brazil[J]. Journal of Applied Microbiology, 2023, 134(7): lxad130. doi: 10.1093/jambio/lxad130
[33] GIBBON M J, COUTO N, DAVID S, et al. A high prevalence of blaOXA-48 in Klebsiella (Raoultella) ornithinolytica and related species in hospital wastewater in South West England[J]. Microbial Genomics, 2021, 7(3): mgen000509.
[34] SCOTTA C, BENNASAR A, MOORE E R B, et al. Taxonomic characterisation of ceftazidime-resistant Brevundimonas isolates and description of Brevundimonas faecalis sp. nov[J]. Systematic and Applied Microbiology, 2011, 34(6): 408-413. doi: 10.1016/j.syapm.2011.06.001
[35] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772-6782.
[36] O'Neill, J. Tackling drug-resistant infections globally: final report and recommendations [EB/OL]. [2016-5-19].
[37] 王盼亮. 医院废水和城市污水处理系统中多重耐药细菌的分子转移特征及相关性研究[D]. 新乡:河南师范大学, 2017. WANG P L. Molecular transfer characteristics and correlation of multidrug-resistant bacteria in hospital wastewater and municipal wastewater treatment system[D]. Xinxiang: Henan Normal University, 2017 (in Chinese).
[38] JIN L Y, WANG R B, WANG X J, et al. Emergence of mcr-1 and carbapenemase genes in hospital sewage water in Beijing, China[J]. Journal of Antimicrobial Chemotherapy, 2018, 73(1): 84-87. doi: 10.1093/jac/dkx355
[39] WU W J, ESPEDIDO B, FENG Y, et al. Citrobacter freundii carrying blaKPC-2 and blaNDM-1: Characterization by whole genome sequencing[J]. Scientific Reports, 2016, 6: 30670. doi: 10.1038/srep30670
[40] WANG T, ZHOU Y, ZOU C H, et al. Identification of a novel blaNDM variant, blaNDM-33, in an Escherichia coli isolate from hospital wastewater in China[J]. mSphere, 2021, 6(5): e0077621. doi: 10.1128/mSphere.00776-21
[41] JU X Y, WU Y C, CHEN G X, et al. Escherichia coli high-risk clone ST410 harboring blaNDM-13 isolated from hospital wastewater in China[J]. Environmental Science and Pollution Research International, 2023, 30(39): 91487-91491. doi: 10.1007/s11356-023-28193-6
[42] LIU X, WONG M K L, ZHANG D, et al. Longitudinal monitoring reveals the emergence and spread of blaGES-5-harboring carbapenem-resistant Klebsiella quasipneumoniae in a Hong Kong hospital wastewater discharge line[J]. Science of the Total Environment, 2023, 903: 166255. doi: 10.1016/j.scitotenv.2023.166255
[43] GU D X, WU Y C, CHEN K C, et al. Recovery and genetic characterization of clinically-relevant ST2 carbapenem-resistant Acinetobacter baumannii isolates from untreated hospital sewage in Zhejiang Province, China[J]. Science of the Total Environment, 2024, 916: 170058. doi: 10.1016/j.scitotenv.2024.170058
[44] 梁亮, 刘晓春, 陈杏春, 等. 2014—2017年广西常见耐碳青霉烯类革兰阴性杆菌的耐药情况[J]. 广西医学, 2020, 42(24): 3244-3247,3252. LIANG L, LIU X C, CHEN X C, et al. Drug resistance of carbapenems-resistant Gram-negative bacteria in Guangxi, 2014-2017[J]. Guangxi Medical Journal, 2020, 42(24): 3244-3247,3252 (in Chinese).
[45] 李爽, 郭小兵, 王若, 等. 河南省某医院耐碳青霉烯类革兰阴性杆菌的临床分布及耐药谱[J]. 中国感染控制杂志, 2020, 19(1): 14-19. doi: 10.12138/j.issn.1671-9638.20205271 LI S, GUO X B, WANG R, et al. Clinical distribution and drug resistance of carbapenem-resistant Gramnegative Bacillus in a hospital of Henan Province[J]. Chinese Journal of Infection Control, 2020, 19(1): 14-19 (in Chinese). doi: 10.12138/j.issn.1671-9638.20205271
[46] ZHU J, LV J N, ZHU Z C, et al. Identification of TMexCD-TOprJ-producing carbapenem-resistant Gram-negative bacteria from hospital sewage[J]. Drug Resistance Updates, 2023, 70: 100989. doi: 10.1016/j.drup.2023.100989
[47] PAULUS G K, HORNSTRA L M, ALYGIZAKIS N, et al. The impact of on-site hospital wastewater treatment on the downstream communal wastewater system in terms of antibiotics and antibiotic resistance genes[J]. International Journal of Hygiene and Environmental Health, 2019, 222(4): 635-644. doi: 10.1016/j.ijheh.2019.01.004
[48] HUTINEL M, JOAKIM LARSSON D G, FLACH C F. Antibiotic resistance genes of emerging concern in municipal and hospital wastewater from a major Swedish city[J]. Science of the Total Environment, 2022, 812: 151433. doi: 10.1016/j.scitotenv.2021.151433
[49] NASRI E, SUBIRATS J, SÀNCHEZ-MELSIÓ A, et al. Abundance of carbapenemase genes (blaKPC, blaNDM and blaOXA-48) in wastewater effluents from Tunisian hospitals[J]. Environmental Pollution, 2017, 229: 371-374. doi: 10.1016/j.envpol.2017.05.095
[50] YAO S J, YE J F, YANG Q, et al. Occurrence and removal of antibiotics, antibiotic resistance genes, and bacterial communities in hospital wastewater[J]. Environmental Science and Pollution Research International, 2021, 28(40): 57321-57333. doi: 10.1007/s11356-021-14735-3
[51] LIU X H, ZHANG G D, LIU Y, et al. Occurrence and fate of antibiotics and antibiotic resistance genes in typical urban water of Beijing, China[J]. Environmental Pollution, 2019, 246: 163-173. doi: 10.1016/j.envpol.2018.12.005
[52] PETROVICH M L, ZILBERMAN A, KAPLAN A, et al. Microbial and viral communities and their antibiotic resistance genes throughout hospital wastewater treatment system[J]. Frontiers in Microbiology, 2020, 11: 153. doi: 10.3389/fmicb.2020.00153
[53] MANOHARAN R K, SRINIVASAN S, SHANMUGAM G, et al. Shotgun metagenomic analysis reveals the prevalence of antibiotic resistance genes and mobile genetic elements in full scale hospital wastewater treatment plants[J]. Journal of Environmental Management, 2021, 296: 113270. doi: 10.1016/j.jenvman.2021.113270
[54] MA Y Y, WU N N, ZHANG T, et al. The microbiome, resistome, and their co-evolution in sewage at a hospital for infectious diseases in Shanghai, China[J]. Microbiology Spectrum, 2024, 12(2): e0390023. doi: 10.1128/spectrum.03900-23
[55] ZHU L, YUAN L, SHUAI X Y, et al. Deciphering basic and key traits of antibiotic resistome in influent and effluent of hospital wastewater treatment systems[J]. Water Research, 2023, 231: 119614. doi: 10.1016/j.watres.2023.119614
[56] GUO X R, TANG N, LEI H, et al. Metagenomic analysis of antibiotic resistance genes in untreated wastewater from three different hospitals[J]. Frontiers in Microbiology, 2021, 12: 709051. doi: 10.3389/fmicb.2021.709051
[57] KANG Y T, WANG J, LI Z J. Meta-analysis addressing the characterization of antibiotic resistome in global hospital wastewater[J]. Journal of Hazardous Materials, 2024, 466: 133577. doi: 10.1016/j.jhazmat.2024.133577
[58] HASSOUN-KHEIR N, STABHOLZ Y, KREFT J U, et al. Comparison of antibiotic-resistant bacteria and antibiotic resistance genes abundance in hospital and community wastewater: A systematic review[J]. Science of the Total Environment, 2020, 743: 140804. doi: 10.1016/j.scitotenv.2020.140804
[59] DAVIDOVA-GERZOVA L, LAUSOVA J, SUKKAR I, et al. Hospital and community wastewater as a source of multidrug-resistant ESBL-producing Escherichia coli[J]. Frontiers in Cellular and Infection Microbiology, 2023, 13: 1184081. doi: 10.3389/fcimb.2023.1184081
[60] AZUMA T, UCHIYAMA T, ZHANG D S, et al. Distribution and characteristics of carbapenem-resistant and extended-spectrum β-lactamase (ESBL) producing Escherichia coli in hospital effluents, sewage treatment plants, and river water in an urban area of Japan[J]. Science of the Total Environment, 2022, 839: 156232. doi: 10.1016/j.scitotenv.2022.156232
[61] MATHYS D A, MOLLENKOPF D F, FEICHT S M, et al. Carbapenemase-producing Enterobacteriaceae and Aeromonas spp. present in wastewater treatment plant effluent and nearby surface waters in the US[J]. PLoS One, 2019, 14(6): e0218650. doi: 10.1371/journal.pone.0218650
[62] KEHL K, SCHALLENBERG A, SZEKAT C, et al. Dissemination of carbapenem resistant bacteria from hospital wastewater into the environment[J]. Science of the Total Environment, 2022, 806(Pt 4): 151339.
[63] RODRIGUEZ-MOZAZ S, CHAMORRO S, MARTI E, et al. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river[J]. Water Research, 2015, 69: 234-242. doi: 10.1016/j.watres.2014.11.021
[64] PROIA L, ANZIL A, BORREGO C, et al. Occurrence and persistence of carbapenemases genes in hospital and wastewater treatment plants and propagation in the receiving river[J]. Journal of Hazardous Materials, 2018, 358: 33-43. doi: 10.1016/j.jhazmat.2018.06.058
[65] AL SALAH D M M, NGWEME G N, LAFFITE A, et al. Hospital wastewaters: A reservoir and source of clinically relevant bacteria and antibiotic resistant genes dissemination in urban river under tropical conditions[J]. Ecotoxicology and Environmental Safety, 2020, 200: 110767. doi: 10.1016/j.ecoenv.2020.110767
[66] POSADA-PERLAZA C E, RAMÍREZ-ROJAS A, PORRAS P, et al. Bogotá River anthropogenic contamination alters microbial communities and promotes spread of antibiotic resistance genes[J]. Scientific Reports, 2019, 9(1): 11764. doi: 10.1038/s41598-019-48200-6
[67] HUANG J, ZHU J, LIU S G, et al. Estuarine salinity gradient governs sedimentary bacterial community but not antibiotic resistance gene profile[J]. Science of the Total Environment, 2022, 806: 151390. doi: 10.1016/j.scitotenv.2021.151390
[68] GUAN Y J, XUE X, JIA J, et al. Metagenomic assembly and binning analyses the prevalence and spread of antibiotic resistome in water and fish gut microbiomes along an environmental gradient[J]. Journal of Environmental Management, 2022, 318: 115521. doi: 10.1016/j.jenvman.2022.115521
[69] SHEN Y B, LV Z Q, YANG L, et al. Integrated aquaculture contributes to the transfer of mcr-1 between animals and humans via the aquaculture supply chain[J]. Environment International, 2019, 130: 104708. doi: 10.1016/j.envint.2019.03.056
[70] HAN Y P, YANG T, CHEN T Z, et al. Characteristics of submicron aerosols produced during aeration in wastewater treatment[J]. Science of the Total Environment, 2019, 696: 134019. doi: 10.1016/j.scitotenv.2019.134019
[71] LI J, ZHOU L T, ZHANG X Y, et al. Bioaerosol emissions and detection of airborne antibiotic resistance genes from a wastewater treatment plant[J]. Atmospheric Environment, 2016, 124: 404-412. doi: 10.1016/j.atmosenv.2015.06.030
[72] WANG Y Z, WANG C, SONG L. Distribution of antibiotic resistance genes and bacteria from six atmospheric environments: Exposure risk to human[J]. Science of the Total Environment, 2019, 694: 133750. doi: 10.1016/j.scitotenv.2019.133750
[73] WANG Y J, ZHANG S, YANG L Y, et al. Spatiotemporal distribution, interactions and toxic effect of microorganisms and ARGs/MGEs from the bioreaction tank in hospital sewage treatment facility[J]. Science of the Total Environment, 2024, 923: 171481. doi: 10.1016/j.scitotenv.2024.171481
[74] MA X L, DONG X, CAI J B, et al. Metagenomic analysis reveals changes in bacterial communities and antibiotic resistance genes in an eye specialty hospital and a general hospital before and after wastewater treatment[J]. Frontiers in Microbiology, 2022, 13: 848167. doi: 10.3389/fmicb.2022.848167
[75] THAKALI O, MALLA B, TANDUKAR S, et al. Release of antibiotic-resistance genes from hospitals and a wastewater treatment plant in the kathmandu valley, Nepal[J]. Water, 2021, 13(19): 2733. doi: 10.3390/w13192733
[76] BURCH T R, SADOWSKY M J, LAPARA T M. Fate of antibiotic resistance genes and class 1 integrons in soil microcosms following the application of treated residual municipal wastewater solids[J]. Environmental Science & Technology, 2014, 48(10): 5620-5627.
[77] HAN X M, HU H W, SHI X Z, et al. Impacts of reclaimed water irrigation on soil antibiotic resistome in urban parks of Victoria, Australia[J]. Environmental Pollution, 2016, 211: 48-57. doi: 10.1016/j.envpol.2015.12.033
[78] WANG F H, QIAO M, LV Z E, et al. Impact of reclaimed water irrigation on antibiotic resistance in public parks, Beijing, China[J]. Environmental Pollution, 2014, 184: 247-253. doi: 10.1016/j.envpol.2013.08.038
[79] KAMPOURIS I D, AGRAWAL S, ORSCHLER L, et al. Antibiotic resistance gene load and irrigation intensity determine the impact of wastewater irrigation on antimicrobial resistance in the soil microbiome[J]. Water Research, 2021, 193: 116818. doi: 10.1016/j.watres.2021.116818
[80] SEYOUM M M, LICHTENBERG R, ORLOFSKY E, et al. Antibiotic resistance in soil and tomato crop irrigated with freshwater and two types of treated wastewater[J]. Environmental Research, 2022, 211: 113021. doi: 10.1016/j.envres.2022.113021
[81] SEYOUM M M, OBAYOMI O, BERNSTEIN N, et al. Occurrence and distribution of antibiotics and corresponding antibiotic resistance genes in different soil types irrigated with treated wastewater[J]. Science of the Total Environment, 2021, 782: 146835. doi: 10.1016/j.scitotenv.2021.146835
[82] CHRISTOU A, AGÜERA A, BAYONA J M, et al. The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes – A review[J]. Water Research, 2017, 123: 448-467. doi: 10.1016/j.watres.2017.07.004
[83] FENG T S, HAN Q, SU W H, et al. Microbiota and mobile genetic elements influence antibiotic resistance genes in dust from dense urban public places[J]. Environmental Pollution, 2022, 311: 119991. doi: 10.1016/j.envpol.2022.119991
[84] HERRAIZ-CARBONÉ M, COTILLAS S, LACASA E, et al. A review on disinfection technologies for controlling the antibiotic resistance spread[J]. Science of the Total Environment, 2021, 797: 149150. doi: 10.1016/j.scitotenv.2021.149150
[85] NIELSEN U, HASTRUP C, KLAUSEN M M, et al. Removal of APIs and bacteria from hospital wastewater by MBR plus O3, O3 + H2O2, PAC or ClO2[J]. Water Science and Technology, 2013, 67(4): 854-862. doi: 10.2166/wst.2012.645
[86] GAUTAM A K, KUMAR S, SABUMON P C. Preliminary study of physico-chemical treatment options for hospital wastewater[J]. Journal of Environmental Management, 2007, 83(3): 298-306. doi: 10.1016/j.jenvman.2006.03.009
[87] JIANG Q, LI H R, WAN K, et al. Quantification and antibiotic resistance risk assessment of chlorination-residual viable/VBNC Escherichia coli and Enterococcus in on-site hospital wastewater treatment system[J]. Science of the Total Environment, 2023, 872: 162139. doi: 10.1016/j.scitotenv.2023.162139
[88] CHIANG C F, TSAI C T, LIN S T, et al. Disinfection of hospital wastewater by continuous ozonization[J]. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances and Environmental Engineering, 2003, 38(12): 2895-2908.
[89] 刘扬. 医院废水中耐药菌的消毒及其耐药性传播特征[D]. 杭州: 浙江大学, 2020. LIU Y. Disinfection of drug-resistant bacteria in hospital wastewater and characteristics of drug resistance transmission[D]. Hangzhou: Zhejiang University, 2020 (in Chinese).
[90] PERINI J A L, TONETTI A L, VIDAL C, et al. Simultaneous degradation of ciprofloxacin, amoxicillin, sulfathiazole and sulfamethazine, and disinfection of hospital effluent after biological treatment via photo-Fenton process under ultraviolet germicidal irradiation[J]. Applied Catalysis B: Environmental, 2018, 224: 761-771 doi: 10.1016/j.apcatb.2017.11.021
[91] SERNA-GALVIS E A, VÉLEZ-PEÑA E, OSORIO-VARGAS P, et al. Inactivation of carbapenem-resistant Klebsiella pneumoniae by photo-Fenton: Residual effect, gene evolution and modifications with citric acid and persulfate[J]. Water Research, 2019, 161: 354-363. doi: 10.1016/j.watres.2019.06.024
[92] DING N, CHANG X M, SHI N, et al. Enhanced inactivation of antibiotic-resistant bacteria isolated from secondary effluents by g-C3N4 photocatalysis[J]. Environmental Science and Pollution Research International, 2019, 26(18): 18730-18738. doi: 10.1007/s11356-019-05080-7
[93] LIANG S T, LIN H, HABTESELASSIE, et al. Electrochemical inactivation of bacteria with a titanium sub-oxide reactive membrane[J]. Water Research, 2018, 145: 172-180. doi: 10.1016/j.watres.2018.08.010
[94] RIEDER A, SCHWARTZ T, SCHÖN-HÖLZ K , et al. Molecular monitoring of inactivation efficiencies of bacteria during pulsed electric field treatment of clinical wastewater[J]. Journal of Applied Microbiology, 2008, 105(6):2035-2045.
[95] 周键, 王三反, 薛志强, 等. Ti/SnO2-Sb2O3/β-PbO2阳极消毒处理医院污水[J]. 环境工程学报, 2014, 8(10): 4110-4114. ZHOU J, WANG S F, XUE Z Q, et al. Disinfection of hospital wastewater by Ti/SnO2-Sb2O3/β-PbO2 anode[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4110-4114 (in Chinese).
[96] LI Q G, LIU G H, QI L, et al. Chlorine-mediated electrochemical advanced oxidation process for ammonia removal: Mechanisms, characteristics and expectation[J]. Science of the Total Environment, 2023, 896: 165169. doi: 10.1016/j.scitotenv.2023.165169
[97] ROLBIECKI D, PAUKSZTO L, KRAWCZYK K, et al. Chlorine disinfection modifies the microbiome, resistome and mobilome of hospital wastewater - A nanopore long-read metagenomic approach[J]. Journal of Hazardous Materials, 2023, 459: 132298. doi: 10.1016/j.jhazmat.2023.132298
[98] BEATTIE R E, SKWOR T, HRISTOVA K R. Survivor microbial populations in post-chlorinated wastewater are strongly associated with untreated hospital sewage and include ceftazidime and meropenem resistant populations[J]. Science of the Total Environment, 2020, 740: 140186. doi: 10.1016/j.scitotenv.2020.140186
[99] POPA L I, GHEORGHE I, BARBU I C, et al. Multidrug resistant Klebsiella pneumoniae ST101 clone survival chain from inpatients to hospital effluent after chlorine treatment[J]. Frontiers in Microbiology, 2021, 11: 610296. doi: 10.3389/fmicb.2020.610296
[100] ROLBIECKI D, KORZENIEWSKA E, CZATZKOWSKA M, et al. The impact of chlorine disinfection of hospital wastewater on clonal similarity and ESBL-production in selected bacteria of the family Enterobacteriaceae[J]. International Journal of Environmental Research and Public Health, 2022, 19(21): 13868. doi: 10.3390/ijerph192113868
[101] GAO P, MUNIR M, XAGORARAKI I. Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant[J]. Science of the Total Environment, 2012, 421: 173-183.
[102] YUAN Q B, GUO M T, YANG J. Fate of antibiotic resistant bacteria and genes during wastewater chlorination: Implication for antibiotic resistance control[J]. PLoS One, 2015, 10(3): e0119403. doi: 10.1371/journal.pone.0119403
[103] ZHANG Y, ZHUANG Y, GENG J, et al. Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection[J]. The Science of the Total Environment, 2015, 512-513: 125-132. doi: 10.1016/j.scitotenv.2015.01.028
[104] ZHANG C M, XU L M, WANG X C, et al. Effects of ultraviolet disinfection on antibiotic-resistant Escherichia coli from wastewater: Inactivation, antibiotic resistance profiles and antibiotic resistance genes[J]. Journal of Applied Microbiology, 2017, 123(1): 295-306. doi: 10.1111/jam.13480
[105] MCKINNEY C W, PRUDEN A. Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater[J]. Environmental Science & Technology, 2012, 46(24): 13393-13400.
[106] AUERBACH E A, SEYFRIED E E, MCMAHON K D. Tetracycline resistance genes in activated sludge wastewater treatment plants[J]. Water Research, 2007, 41(5): 1143-1151. doi: 10.1016/j.watres.2006.11.045
[107] 贾锋. 紫外线消毒在医院污水治理中的应用影响因素探讨[J]. 环境科学与管理, 2018, 43(12): 105-108. doi: 10.3969/j.issn.1673-1212.2018.12.025 JIA F. Analysis of influencing factors of ultraviolet disinfection on hospital wastewater treatment[J]. Environmental Science and Management, 2018, 43(12): 105-108 (in Chinese) doi: 10.3969/j.issn.1673-1212.2018.12.025
[108] RIZZO L, FIORENTINO A, ANSELMO A. Advanced treatment of urban wastewater by UV radiation: Effect on antibiotics and antibiotic-resistant E. coli strains[J]. Chemosphere, 2013, 92(2): 171-176. doi: 10.1016/j.chemosphere.2013.03.021
[109] ZHANG J Y, LI W G, ZHANG X R, et al. Combined applications of UV and chlorine on antibiotic resistance control: A critical review[J]. Environmental Research, 2024, 243: 117884. doi: 10.1016/j.envres.2023.117884
[110] SILVA I, TACÃO M, TAVARES R D S, et al. Fate of cefotaxime-resistant Enterobacteriaceae and ESBL-producers over a full-scale wastewater treatment process with UV disinfection[J]. Science of the Total Environment, 2018, 639: 1028-1037. doi: 10.1016/j.scitotenv.2018.05.229
[111] CHEN X W, CHEN Z, NGO H H, et al. Comparison of inactivation characteristics between Gram-positive and Gram-negative bacteria in water by synergistic UV and chlorine disinfection[J]. Environmental Pollution, 2023, 333: 122007. doi: 10.1016/j.envpol.2023.122007
[112] PHATTARAPATTAMAWONG S, CHAREEWAN N, POLPRASERT C. Comparative removal of two antibiotic resistant bacteria and genes by the simultaneous use of chlorine and UV irradiation (UV/chlorine): Influence of free radicals on gene degradation[J]. Science of the Total Environment, 2021, 755: 142696. doi: 10.1016/j.scitotenv.2020.142696
[113] WANG H C, WANG J, LI S M, et al. Synergistic effect of UV/chlorine in bacterial inactivation, resistance gene removal, and gene conjugative transfer blocking[J]. Water Research, 2020, 185: 116290. doi: 10.1016/j.watres.2020.116290
[114] YAO S J, YE J F, XIA J, et al. Inactivation and photoreactivation of blaNDM-1-carrying super-resistant bacteria by UV, chlorination and UV/chlorination[J]. Journal of Hazardous Materials, 2022, 439: 129549. doi: 10.1016/j.jhazmat.2022.129549
[115] LUO Y L, GUO W S, NGO H H, et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment[J]. Science of the Total Environment, 2014, 473: 619-641.
[116] SU C Y, LI W G, LU Y X, et al. Effect of heterogeneous Fenton-like pre-treatment on anaerobic granular sludge performance and microbial community for the treatment of traditional Chinese medicine wastewater[J]. Journal of Hazardous Materials, 2016, 314: 51-58. doi: 10.1016/j.jhazmat.2016.04.024
[117] ZENG P, DU J J, SONG Y, et al. Efficiency comparison for treatment of amantadine pharmaceutical wastewater by Fenton, ultrasonic, and Fenton/ultrasonic processes[J]. Environmental Earth Sciences, 2015, 73(9): 4979-4987. doi: 10.1007/s12665-015-4204-2
[118] GUO C, WANG K, HOU S, et al. H2O2 and/or TiO2 photocatalysis under UV irradiation for the removal of antibiotic resistant bacteria and their antibiotic resistance genes[J]. Journal of Hazardous Materials, 2017, 323: 710-718. doi: 10.1016/j.jhazmat.2016.10.041
[119] YU P, ZHOU X Q, LI Z F, et al. Inactivation and change of tetracycline-resistant Escherichia coli in secondary effluent by visible light-driven photocatalytic process using Ag/AgBr/g-C3N4[J]. Science of the Total Environment, 2020, 705: 135639. doi: 10.1016/j.scitotenv.2019.135639
[120] REN S J, BOO C, GUO N, et al. Photocatalytic reactive ultrafiltration membrane for removal of antibiotic resistant bacteria and antibiotic resistance genes from wastewater effluent[J]. Environmental Science & Technology, 2018, 52(15): 8666-8673.
[121] SAHA D, VISCONTI M C, DESIPIO M M, et al. Inactivation of antibiotic resistance gene by ternary nanocomposites of carbon nitride, reduced graphene oxide and iron oxide under visible light[J]. Chemical Engineering Journal, 2020, 382: 122857. doi: 10.1016/j.cej.2019.122857
[122] DOS SANTOS A J, KRONKA M S, FORTUNATO G V, et al. Recent advances in electrochemical water technologies for the treatment of antibiotics: A short review[J]. Current Opinion in Electrochemistry, 2021, 26: 100674. doi: 10.1016/j.coelec.2020.100674