[1] |
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. doi: 10.1126/science.1102896
|
[2] |
SHIN D S, KIM H G, AHN H S, et al. Distribution of oxygen functional groups of graphene oxide obtained from low-temperature atomic layer deposition of titanium oxide[J]. RSC Advances, 2017, 7(23): 13979-13984. doi: 10.1039/C7RA00114B
|
[3] |
DREYER D R, PARK S, BIELAWSKI C W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2010, 39(1): 228-240. doi: 10.1039/B917103G
|
[4] |
KONKENA B, VASUDEVAN S. Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through pKa measurements[J]. The Journal of Physical Chemistry Letters, 2012, 3(7): 867-872. doi: 10.1021/jz300236w
|
[5] |
KONKENA B, VASUDEVAN S. Covalently linked, water-dispersible, cyclodextrin: Reduced-graphene oxide sheets[J]. Langmuir, 2012, 28(34): 12432-12437. doi: 10.1021/la3020783
|
[6] |
KUMAR V, KUMAR A, LEE D J, et al. Estimation of number of graphene layers using different methods: A focused review[J]. Materials, 2021, 14(16): 4590. doi: 10.3390/ma14164590
|
[7] |
YANG K J, PAN T T, ZHAO Q, et al. Dual-function ultrafiltration membrane constructed from pure activated carbon particles via facile nanostructure reconstruction for high-efficient water purification[J]. Carbon, 2020, 168: 254-263. doi: 10.1016/j.carbon.2020.06.083
|
[8] |
CHEN C, ZHU X Y, CHEN B L. Durable superhydrophobic/superoleophilic graphene-based foam for high-efficiency oil spill cleanups and recovery[J]. Environmental Science & Technology, 2019, 53(3): 1509-1517.
|
[9] |
AVORNYO A, CHRYSIKOPOULOS C V. Applications of graphene oxide (GO) in oily wastewater treatment: Recent developments, challenges, and opportunities[J]. Journal of Environmental Management, 2024, 353: 120178. doi: 10.1016/j.jenvman.2024.120178
|
[10] |
LI X H, LIU F, ZHANG W F, et al. Electrocatalytical oxidation of arsenite by reduced graphene oxide via in situ electrocatalytic generation of H2O2[J]. Environmental Pollution, 2019, 254: 112958. doi: 10.1016/j.envpol.2019.112958
|
[11] |
LIU R L, XU Y M, CHEN B L. Self-assembled nano-FeO(OH)/reduced graphene oxide aerogel as a reusable catalyst for photo-Fenton degradation of phenolic organics[J]. Environmental Science & Technology, 2018, 52(12): 7043-7053.
|
[12] |
AKHAVAN O, GHADERI E. Toxicity of graphene and graphene oxide nanowalls against bacteria[J]. ACS Nano, 2010, 4(10): 5731-5736. doi: 10.1021/nn101390x
|
[13] |
EGOROVA M N, TARASOVA L A, VASILIEVA F D, et al. Antimicrobial activity of graphene oxide sheets[C]//AIP Conference Proceedings, Kuala Lumpur, Malaysia, 2018: 020028-1.
|
[14] |
FILIK H, AVAN A A. Review on applications of carbon nanomaterials for simultaneous electrochemical sensing of environmental contaminant dihydroxybenzene isomers[J]. Arabian Journal of Chemistry, 2020, 13(7): 6092-6105.
|
[15] |
KUCINSKIS G, BAJARS G, KLEPERIS J. Graphene in lithium ion battery cathode materials: A review[J]. Journal of Power Sources, 2013, 240: 66-79.
|
[16] |
NIZAMI M Z I, TAKASHIBA S, NISHINA Y. Graphene oxide: A new direction in dentistry[J]. Applied Materials Today, 2020, 19: 100576.
|
[17] |
CAO W J, HE L, CAO W D, et al. Recent progress of graphene oxide as a potential vaccine carrier and adjuvant[J]. Acta Biomaterialia, 2020, 112: 14-28. doi: 10.1016/j.actbio.2020.06.009
|
[18] |
LIN J, CHEN X Y, HUANG P. Graphene-based nanomaterials for bioimaging[J]. Advanced Drug Delivery Reviews, 2016, 105: 242-254. doi: 10.1016/j.addr.2016.05.013
|
[19] |
KANG S, KIM K M, JUNG K, et al. Publisher correction: Graphene oxide quantum dots derived from coal for bioimaging: Facile and green approach[J]. Scientific Reports, 2020, 10(1): 7451. doi: 10.1038/s41598-020-60499-0
|
[20] |
WU J, LI Z F, LI Y, et al. Photothermal effects of reduced graphene oxide on pancreatic cancer[J]. Technology in Cancer Research & Treatment, 2018, 17: 1533034618768637.
|
[21] |
LIU L J, MA Q M, CAO J, et al. Recent progress of graphene oxide-based multifunctional nanomaterials for cancer treatment[J]. Cancer Nanotechnology, 2021, 12(1): 18. doi: 10.1186/s12645-021-00087-7
|
[22] |
CONNOLLY M, MOLES G, CARNIEL F C, et al. Applicability of OECD TG 201, 202, 203 for the aquatic toxicity testing and assessment of 2D Graphene material nanoforms to meet regulatory needs[J]. NanoImpact, 2023, 29: 100447. doi: 10.1016/j.impact.2022.100447
|
[23] |
REN X M, LI J, CHEN C L, et al. Graphene analogues in aquatic environments and porous media: Dispersion, aggregation, deposition and transformation[J]. Environmental Science: Nano, 2018, 5(6): 1298-1340. doi: 10.1039/C7EN01258F
|
[24] |
BHANUSHALI H, AMRUTKAR S, MESTRY S, et al. Shape memory polymer nanocomposite: A review on structure–property relationship[J]. Polymer Bulletin, 2022, 79(6): 3437-3493. doi: 10.1007/s00289-021-03686-x
|
[25] |
CHOWDHURY I, DUCH M C, MANSUKHANI N D, et al. Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment[J]. Environmental Science & Technology, 2013, 47(12): 6288-6296.
|
[26] |
HARRISON D M, BRIFFA S M, MAZZONELLO A, et al. A review of the aquatic environmental transformations of engineered nanomaterials[J]. Nanomaterials, 2023, 13(14): 2098. doi: 10.3390/nano13142098
|
[27] |
ZHAO Y C, LIU Y, ZHANG X B, et al. Environmental transformation of graphene oxide in the aquatic environment[J]. Chemosphere, 2021, 262: 127885. doi: 10.1016/j.chemosphere.2020.127885
|
[28] |
ALI J, LI Y, SHANG E X, et al. Aggregation of graphene oxide and its environmental implications in the aquatic environment[J]. Chinese Chemical Letters, 2023, 34(2): 107327. doi: 10.1016/j.cclet.2022.03.050
|
[29] |
ZOU Y D, WANG X X, AI Y J, et al. Coagulation behavior of graphene oxide on nanocrystallined Mg/Al layered double hydroxides: Batch experimental and theoretical calculation study[J]. Environmental Science & Technology, 2016, 50(7): 3658-3667.
|
[30] |
SADR M K, CHERAGHI M, LORESTANI B, et al. Removal of fluorouracil from aqueous environment using magnetite graphene oxide modified with γ-cyclodextrin[J]. Environmental Monitoring and Assessment, 2024, 196(2): 116. doi: 10.1007/s10661-023-12271-w
|
[31] |
MU L, GAO Y, HU X G. Characterization of biological secretions binding to graphene oxide in water and the specific toxicological mechanisms[J]. Environmental Science & Technology, 2016, 50(16): 8530-8537.
|
[32] |
OUYANG S H, LI K W, ZHOU Q X, et al. Widely distributed nanocolloids in water regulate the fate and risk of graphene oxide[J]. Water Research, 2019, 165: 114987. doi: 10.1016/j.watres.2019.114987
|
[33] |
LI Y, YANG N, DU T T, et al. Transformation of graphene oxide by chlorination and chloramination: Implications for environmental transport and fate[J]. Water Research, 2016, 103: 416-423. doi: 10.1016/j.watres.2016.07.051
|
[34] |
WANG F F, DUAN L, WANG F, et al. Environmental reduction of carbon nanomaterials affects their capabilities to accumulate aromatic compounds[J]. NanoImpact, 2016, 1: 21-28. doi: 10.1016/j.impact.2016.02.001
|
[35] |
PECHER K, HADERLEIN S B, SCHWARZENBACH R P. Reduction of polyhalogenated methanes by surface-bound Fe(II) in aqueous suspensions of iron oxides[J]. Environmental Science & Technology, 2002, 36(8): 1734-1741.
|
[36] |
LOH K P, BAO Q L, EDA G, et al. Graphene oxide as a chemically tunable platform for optical applications[J]. Nature Chemistry, 2010, 2(12): 1015-1024. doi: 10.1038/nchem.907
|
[37] |
BORTOLOZZO L S, CÔA F, KHAN L U, et al. Mitigation of graphene oxide toxicity in C. elegans after chemical degradation with sodium hypochlorite[J]. Chemosphere, 2021, 278: 130421. doi: 10.1016/j.chemosphere.2021.130421
|
[38] |
ZHANG Y Y, YU W T, WANG J, et al. Long-term exposure of graphene oxide suspension to air leading to spontaneous radical-driven degradation[J]. Environmental Science & Technology, 2023, 57(38): 14407-14416.
|
[39] |
CHOWDHURY I, HOU W C, GOODWIN D, et al. Sunlight affects aggregation and deposition of graphene oxide in the aquatic environment[J]. Water Research, 2015, 78: 37-46. doi: 10.1016/j.watres.2015.04.001
|
[40] |
WANG X J, ZENG Z H, YANG T H, et al. DNA damage caused by light-driven graphene oxide: A new mechanism[J]. Environmental Science: Nano, 2023, 10(2): 519-527. doi: 10.1039/D2EN00948J
|
[41] |
KURAPATI R, RUSSIER J, SQUILLACI M A, et al. Dispersibility-dependent biodegradation of graphene oxide by myeloperoxidase[J]. Small, 2015, 11(32): 3985-3994. doi: 10.1002/smll.201500038
|
[42] |
LIU L, ZHU C L, FAN M M, et al. Oxidation and degradation of graphitic materials by naphthalene-degrading bacteria[J]. Nanoscale, 2015, 7(32): 13619-13628. doi: 10.1039/C5NR02502H
|
[43] |
XUE F M, YANG S T, CHEN L Y, et al. Quantification of sp2 carbon nanomaterials in biological systems: Pharmacokinetics, biodistribution and ecological uptake[J]. Reviews in Inorganic Chemistry, 2015, 35(4): 225-247. doi: 10.1515/revic-2015-0013
|
[44] |
LIU J H, YANG S T, WANG H F, et al. Effect of size and dose on the biodistribution of graphene oxide in mice[J]. Nanomedicine, 2012, 7(12): 1801-1812. doi: 10.2217/nnm.12.60
|
[45] |
ZHANG Y B, PETIBONE D, XU Y, et al. Toxicity and efficacy of carbon nanotubes and graphene: The utility of carbon-based nanoparticles in nanomedicine[J]. Drug Metabolism Reviews, 2014, 46(2): 232-246. doi: 10.3109/03602532.2014.883406
|
[46] |
FASERL K, CHETWYND A J, LYNCH I, et al. Corona isolation method matters: Capillary electrophoresis mass spectrometry based comparison of protein corona compositions following on-particle versus in-solution or in-gel digestion[J]. Nanomaterials, 2019, 9(6): 898. doi: 10.3390/nano9060898
|
[47] |
YARAGALLA S, MISHRA R K, THOMAS S, et al. Carbon-based nanofillers and their rubber nanocomposites: fundamentals and applications[M]. Elsevier, 2019.
|
[48] |
MITTAL S, KUMAR V, DHIMAN N, et al. Physico-chemical properties based differential toxicity of graphene oxide/reduced graphene oxide in human lung cells mediated through oxidative stress[J]. Scientific Reports, 2016, 6: 39548. doi: 10.1038/srep39548
|
[49] |
ROȘU M C, PÁLL E, SOCACI C, et al. Cytotoxicity of methylcellulose-based films containing graphenes and curcumin on human lung fibroblasts[J]. Process Biochemistry, 2017, 52: 243-249. doi: 10.1016/j.procbio.2016.10.002
|
[50] |
LAMMEL T, BOISSEAUX P, NAVAS J M. Potentiating effect of graphene nanomaterials on aromatic environmental pollutant-induced cytochrome P450 1A expression in the topminnow fish hepatoma cell line PLHC-1[J]. Environmental Toxicology, 2015, 30(10): 1192-1204. doi: 10.1002/tox.21991
|
[51] |
LU K, DONG S P, PETERSEN E J, et al. Biological uptake, distribution, and depuration of radio-labeled graphene in adult zebrafish: Effects of graphene size and natural organic matter[J]. ACS Nano, 2017, 11(3): 2872-2885. doi: 10.1021/acsnano.6b07982
|
[52] |
WANG K, RUAN J, SONG H, et al. Biocompatibility of graphene oxide[J]. Nanoscale Research Letters, 2011, 6(1): 8.
|
[53] |
MENDONÇA M C P, SOARES E S, de JESUS M B, et al. Reduced graphene oxide: Nanotoxicological profile in rats[J]. Journal of Nanobiotechnology, 2016, 14(1): 53. doi: 10.1186/s12951-016-0206-9
|
[54] |
WU W, YAN L, CHEN S Y, et al. Investigating oxidation state-induced toxicity of PEGylated graphene oxide in ocular tissue using gene expression profiles[J]. Nanotoxicology, 2018, 12(8): 819-835. doi: 10.1080/17435390.2018.1480813
|
[55] |
WANG X J, LIU Z. Carbon nanotubes in biology and medicine: An overview[J]. Chinese Science Bulletin, 2012, 57(2): 167-180.
|
[56] |
BENGTSON S, KNUDSEN K B, KYJOVSKA Z O, et al. Differences in inflammation and acute phase response but similar genotoxicity in mice following pulmonary exposure to graphene oxide and reduced graphene oxide[J]. PLoS One, 2017, 12(6): e0178355. doi: 10.1371/journal.pone.0178355
|
[57] |
BAI C C, TANG M. Progress on the toxicity of quantum dots to model organism-zebrafish[J]. Journal of Applied Toxicology, 2023, 43(1): 89-106. doi: 10.1002/jat.4333
|
[58] |
GHAZIMORADI M M, AZAD F V, JALALI F, et al. The neurotoxic mechanisms of graphene family nanomaterials at the cellular level: A solution-based approach review[J]. Current Pharmaceutical Design, 2022, 28(44): 3572-3581. doi: 10.2174/1381612829666221202093813
|
[59] |
GUO Z L, ZHANG P, CHETWYND A J, et al. Elucidating the mechanism of the surface functionalization dependent neurotoxicity of graphene family nanomaterials[J]. Nanoscale, 2020, 12(36): 18600-18605. doi: 10.1039/D0NR04179C
|
[60] |
RAMAL-SANCHEZ M, FONTANA A, VALBONETTI L, et al. Graphene and reproduction: A love-hate relationship[J]. Nanomaterials, 2021, 11(2): 547. doi: 10.3390/nano11020547
|
[61] |
JIN L, DOU T T, CHEN J Y, et al. Sublethal toxicity of graphene oxide in Caenorhabditis elegans under multi-generational exposure[J]. Ecotoxicology and Environmental Safety, 2022, 229: 113064. doi: 10.1016/j.ecoenv.2021.113064
|
[62] |
AYREEN Z, KHATOON U, KIRTI A, et al. Perilous paradigm of graphene oxide and its derivatives in biomedical applications: Insight to immunocompatibility[J]. Biomedicine & Pharmacotherapy, 2024, 176: 116842.
|
[63] |
YAN J Y, CHEN L L, HUANG C C, et al. Consecutive evaluation of graphene oxide and reduced graphene oxide nanoplatelets immunotoxicity on monocytes[J]. Colloids and Surfaces B: Biointerfaces, 2017, 153: 300-309. doi: 10.1016/j.colsurfb.2017.02.036
|
[64] |
LI B, YANG J Z, HUANG Q, et al. Biodistribution and pulmonary toxicity of intratracheally instilled graphene oxide in mice[J]. NPG Asia Materials, 2013, 5(4): 237-239.
|
[65] |
LORET T, de LUNA L A V, LUCHERELLI M A, et al. Lung persistence, biodegradation, and elimination of graphene-based materials are predominantly size-dependent and mediated by alveolar phagocytes[J]. Small, 2023, 19(39): e2301201. doi: 10.1002/smll.202301201
|
[66] |
PARK C S, CHOI K S, SHIN J W, et al. Inhibition of viability of the respiratory epithelial cells using functionalized graphene oxide[J]. Journal of Nanoscience and Nanotechnology, 2015, 15(3): 2060-2066. doi: 10.1166/jnn.2015.9539
|
[67] |
MU Q X, JIANG G B, CHEN L X, et al. Chemical basis of interactions between engineered nanoparticles and biological systems[J]. Chemical Reviews, 2014, 114(15): 7740-7781. doi: 10.1021/cr400295a
|
[68] |
MA K Y, ZHANG S P, YE B Q, et al. A new view of graphene oxide biosafety in a water environment using an eatable fish as a model[J]. RSC Advances, 2016, 6(35): 29619-29623. doi: 10.1039/C5RA26026D
|
[69] |
XIONG G H, DENG Y Y, LIAO X J, et al. Graphene oxide nanoparticles induce hepatic dysfunction through the regulation of innate immune signaling in zebrafish (Danio rerio)[J]. Nanotoxicology, 2020, 14(5): 667-682. doi: 10.1080/17435390.2020.1735552
|
[70] |
YANG K, GONG H, SHI X Z, et al. In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration[J]. Biomaterials, 2013, 34(11): 2787-2795. doi: 10.1016/j.biomaterials.2013.01.001
|
[71] |
PATLOLLA A K, RANDOLPH J, KUMARI S A, et al. Toxicity evaluation of graphene oxide in kidneys of sprague-dawley rats[J]. International Journal of Environmental Research and Public Health, 2016, 13(4): 380. doi: 10.3390/ijerph13040380
|
[72] |
GURUNATHAN S, ARSALAN IQBAL M, QASIM M, et al. Evaluation of graphene oxide induced cellular toxicity and transcriptome analysis in human embryonic kidney cells[J]. Nanomaterials, 2019, 9(7): 969. doi: 10.3390/nano9070969
|
[73] |
MONROY-TORRES B, RODRÍGUEZ-GALVÁN A, RAMÍREZ-APAN M T, et al. Lanthanide-modified graphene oxide and nanodiamond materials and their cytotoxicity[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2024, 32(6): 522-535. doi: 10.1080/1536383X.2023.2300667
|
[74] |
PELIN M, FUSCO L, LEÓN V, et al. Differential cytotoxic effects of graphene and graphene oxide on skin keratinocytes[J]. Scientific Reports, 2017, 7: 40572. doi: 10.1038/srep40572
|
[75] |
LIU L, LIU J C, WANG Y J, et al. Facile synthesis of monodispersed silver nanoparticles on graphene oxide sheets with enhanced antibacterial activity[J]. New Journal of Chemistry, 2011, 35(7): 1418-1423. doi: 10.1039/c1nj20076c
|
[76] |
WU W, YAN L, WU Q, et al. Evaluation of the toxicity of graphene oxide exposure to the eye[J]. Nanotoxicology, 2016, 10(9): 1329-1340. doi: 10.1080/17435390.2016.1210692
|
[77] |
BANGEPPAGARI M, PARK S H, KUNDAPUR R R, et al. Graphene oxide induces cardiovascular defects in developing zebrafish (Danio rerio) embryo model: in-vivo toxicity assessment[J]. Science of the Total Environment, 2019, 673: 810-820. doi: 10.1016/j.scitotenv.2019.04.082
|
[78] |
XING F Y, GUAN L L, LI Y L, et al. Biosynthesis of reduced graphene oxide nanosheets and their in vitro cytotoxicity against cardiac cell lines of Catla catla[J]. Environmental Toxicology and Pharmacology, 2016, 48: 110-115. doi: 10.1016/j.etap.2016.09.022
|
[79] |
HU X G, WEI Z, MU L. Graphene oxide nanosheets at trace concentrations elicit neurotoxicity in the offspring of zebrafish[J]. Carbon, 2017, 117: 182-191. doi: 10.1016/j.carbon.2017.02.092
|
[80] |
KIM M, EOM H J, CHOI I, et al. Graphene oxide-induced neurotoxicity on neurotransmitters, AFD neurons and locomotive behavior in Caenorhabditis elegans[J]. NeuroToxicology, 2020, 77: 30-39. doi: 10.1016/j.neuro.2019.12.011
|
[81] |
YE S F, YANG P Y, CHENG K M, et al. Drp1-dependent mitochondrial fission mediates toxicity of positively charged graphene in microglia[J]. ACS Biomaterials Science & Engineering, 2016, 2(5): 722-733.
|
[82] |
DZIEWIĘCKA M, WITAS P, KARPETA-KACZMAREK J, et al. Reduced fecundity and cellular changes in Acheta domesticus after multigenerational exposure to graphene oxide nanoparticles in food[J]. Science of the Total Environment, 2018, 635: 947-955. doi: 10.1016/j.scitotenv.2018.04.207
|
[83] |
ZHANG X L, ZHOU Q X, ZOU W, et al. Molecular mechanisms of developmental toxicity induced by graphene oxide at predicted environmental concentrations[J]. Environmental Science & Technology, 2017, 51(14): 7861-7871.
|
[84] |
RIVE C, REINA G, WAGLE P, et al. Improved biocompatibility of amino-functionalized graphene oxide in Caenorhabditis elegans[J]. Small, 2019, 15(45): 1902699. doi: 10.1002/smll.201902699
|
[85] |
YANG Z W, PAN Y N, CHEN T T, et al. Cytotoxicity and immune dysfunction of dendritic cells caused by graphene oxide[J]. Frontiers in Pharmacology, 2020, 11: 1206. doi: 10.3389/fphar.2020.01206
|
[86] |
CHEN M J, YIN J F, LIANG Y, et al. Oxidative stress and immunotoxicity induced by graphene oxide in zebrafish[J]. Aquatic Toxicology, 2016, 174: 54-60. doi: 10.1016/j.aquatox.2016.02.015
|
[87] |
SUN J L, CHAO J, HUANG J, et al. Uniform small graphene oxide as an efficient cellular nanocarrier for immunostimulatory CpG oligonucleotides[J]. ACS Applied Materials & Interfaces, 2014, 6(10): 7926-7932.
|
[88] |
WU R, FANG J, XIANG X B, et al. Graphene oxide influences transfer of plasmid-mediated antibiotic resistance genes into plants[J]. Science of the Total Environment, 2024, 911: 168652. doi: 10.1016/j.scitotenv.2023.168652
|
[89] |
NOGUEIRA P F M, NAKABAYASHI D, ZUCOLOTTO V. The effects of graphene oxide on green algae Raphidocelis subcapitata[J]. Aquatic Toxicology, 2015, 166: 29-35. doi: 10.1016/j.aquatox.2015.07.001
|
[90] |
MALINA T, MARŠÁLKOVÁ E, HOLÁ K, et al. Toxicity of graphene oxide against algae and cyanobacteria: Nanoblade-morphology-induced mechanical injury and self-protection mechanism[J]. Carbon, 2019, 155: 386-396. doi: 10.1016/j.carbon.2019.08.086
|
[91] |
ZHAO J Y, LIANG Y J, JIN L, et al. Joint toxic action and metabolic mechanisms of graphene nanomaterial mixtures in Microcystis aeruginosa[J]. Polish Journal of Environmental Studies, 2023, 32(2): 1447-1458. doi: 10.15244/pjoes/156426
|
[92] |
VAQUERO C, WENDELBO R, EGIZABAL A, et al. Exposure to graphene in a pilot production plant[J]. Journal of Physics: Conference Series, 2019, 1323(1): 012005. doi: 10.1088/1742-6596/1323/1/012005
|
[93] |
LIU H S, LI J Z, ZHANG Y T, et al. Analysis of physical examination data of cardiopulmonary function of graphene workers and health management measures[J]. Chinese Journal of Industrial Hygiene and Occupational Diseases, 2020, 38(6): 465-466.
|
[94] |
ANDREWS J P M, JOSHI S S, TZOLOS E, et al. First-in-human controlled inhalation of thin graphene oxide nanosheets to study acute cardiorespiratory responses[J]. Nature Nanotechnology, 2024, 19: 705-714. doi: 10.1038/s41565-023-01572-3
|
[95] |
CEDERVALL T, LYNCH I, LINDMAN S, et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(7): 2050-2055.
|
[96] |
BEGUM P, IKHTIARI R, FUGETSU B. Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce[J]. Carbon, 2011, 49(12): 3907-3919. doi: 10.1016/j.carbon.2011.05.029
|
[97] |
TREUEL L, DOCTER D, MASKOS M, et al. Protein corona - from molecular adsorption to physiological complexity[J]. Beilstein Journal of Nanotechnology, 2015, 6: 857-873. doi: 10.3762/bjnano.6.88
|
[98] |
FRANQUI L S, de FARIAS M A, PORTUGAL R V, et al. Interaction of graphene oxide with cell culture medium: Evaluating the fetal bovine serum protein corona formation towards in vitro nanotoxicity assessment and nanobiointeractions[J]. Materials Science and Engineering: C, 2019, 100: 363-377. doi: 10.1016/j.msec.2019.02.066
|
[99] |
CUI G X, SU W T, TAN M Q. Formation and biological effects of protein corona for food-related nanoparticles[J]. Comprehensive Reviews in Food Science and Food Safety, 2022, 21(2): 2002-2031. doi: 10.1111/1541-4337.12838
|
[100] |
MU Q X, SU G X, LI L W, et al. Size-dependent cell uptake of protein-coated graphene oxide nanosheets[J]. ACS Applied Materials & Interfaces, 2012, 4(4): 2259-2266.
|
[101] |
ZHANG B, WEI P, ZHOU Z X, et al. Interactions of graphene with mammalian cells: Molecular mechanisms and biomedical insights[J]. Advanced Drug Delivery Reviews, 2016, 105: 145-162. doi: 10.1016/j.addr.2016.08.009
|
[102] |
AKHTER M H, KHALILULLAH H, GUPTA M, et al. Impact of protein corona on the biological identity of nanomedicine: Understanding the fate of nanomaterials in the biological milieu[J]. Biomedicines, 2021, 9(10): 1496. doi: 10.3390/biomedicines9101496
|
[103] |
DUAN G X, KANG S G, TIAN X, et al. Protein corona mitigates the cytotoxicity of graphene oxide by reducing its physical interaction with cell membrane[J]. Nanoscale, 2015, 7(37): 15214-15224. doi: 10.1039/C5NR01839K
|
[104] |
DABROWSKI B, ZUCHOWSKA A, KASPRZAK A, et al. Cellular uptake of biotransformed graphene oxide into lung cells[J]. Chemico-Biological Interactions, 2023, 376: 110444. doi: 10.1016/j.cbi.2023.110444
|
[105] |
ALNASSER F, CASTAGNOLA V, BOSELLI L, et al. Graphene nanoflake uptake mediated by scavenger receptors[J]. Nano Letters, 2019, 19(2): 1260-1268. doi: 10.1021/acs.nanolett.8b04820
|
[106] |
XU M, ZHU J Q, WANG F F, et al. Improved in vitro and in vivo biocompatibility of graphene oxide through surface modification: Poly(acrylic acid)-functionalization is superior to PEGylation[J]. ACS Nano, 2016, 10(3): 3267-3281. doi: 10.1021/acsnano.6b00539
|
[107] |
MAGNE T M, de OLIVEIRA VIEIRA T, ALENCAR L M R, et al. Graphene and its derivatives: Understanding the main chemical and medicinal chemistry roles for biomedical applications[J]. Journal of Nanostructure in Chemistry, 2022, 12(5): 693-727. doi: 10.1007/s40097-021-00444-3
|
[108] |
HOLMANNOVA D, BORSKY P, SVADLAKOVA T, et al. Reproductive and developmental nanotoxicity of carbon nanoparticles[J]. Nanomaterials, 2022, 12(10): 1716. doi: 10.3390/nano12101716
|
[109] |
MA Y F, SHEN H, TU X L, et al. Assessing in vivo toxicity of graphene materials: Current methods and future outlook[J]. Nanomedicine, 2014, 9(10): 1565-1580. doi: 10.2217/nnm.14.68
|
[110] |
CÔA F, DELITE F S, STRAUSS M, et al. Toxicity mitigation and biodistribution of albumin corona coated graphene oxide and carbon nanotubes in Caenorhabditis elegans[J]. NanoImpact, 2022, 27: 100413. doi: 10.1016/j.impact.2022.100413
|
[111] |
de SOUSA M, MARTINS C H Z, FRANQUI L S, et al. Covalent functionalization of graphene oxide with d-mannose: Evaluating the hemolytic effect and protein corona formation[J]. Journal of Materials Chemistry B, 2018, 6(18): 2803-2812. doi: 10.1039/C7TB02997G
|
[112] |
HAJIPOUR M J, RAHEB J, AKHAVAN O, et al. Personalized disease-specific protein corona influences the therapeutic impact of graphene oxide[J]. Nanoscale, 2015, 7(19): 8978-8994. doi: 10.1039/C5NR00520E
|
[113] |
YANG Y, HAN P L, XIE X J, et al. Protein corona reduced graphene oxide cytotoxicity by inhibiting endocytosis[J]. Colloid and Interface Science Communications, 2021, 45: 100514. doi: 10.1016/j.colcom.2021.100514
|
[114] |
CUI L S, QUAGLIARINI E, XIAO S Y, et al. The protein corona reduces the anticancer effect of graphene oxide in HER-2-positive cancer cells[J]. Nanoscale Advances, 2022, 4(18): 4009-4015. doi: 10.1039/D2NA00308B
|
[115] |
COREAS R, CASTILLO C, LI Z B, et al. Biological impacts of reduced graphene oxide affected by protein corona formation[J]. Chemical Research in Toxicology, 2022, 35(7): 1244-1256. doi: 10.1021/acs.chemrestox.2c00042
|
[116] |
RAJASEKAR P, RAO G, KUMAR A S, et al. Interaction of BSA with graphene oxide: Influence on the bioactivity of graphene oxide[J]. Diamond and Related Materials, 2023, 132: 109629. doi: 10.1016/j.diamond.2022.109629
|
[117] |
TANG Y L, TIAN J L, LI S Y, et al. Combined effects of graphene oxide and Cd on the photosynthetic capacity and survival of Microcystis aeruginosa[J]. Science of the Total Environment, 2015, 532: 154-161. doi: 10.1016/j.scitotenv.2015.05.081
|
[118] |
REN J Y, CAI R, WANG J, et al. Precision nanomedicine development based on specific opsonization of human cancer patient-personalized protein coronas[J]. Nano Letters, 2019, 19(7): 4692-4701. doi: 10.1021/acs.nanolett.9b01774
|