Teleanu D M, Chircov C, Grumezescu A M, et al. Neurotoxicity of nanomaterials:An up-to-date overview[J]. Nanomaterials, 2019, 9(1):E96
Keller A A, Lazareva A. Predicted releases of engineered nanomaterials:From global to regional to local[J]. Environmental Science & Technology Letters, 2014, 1(1):65-70
Weir A, Westerhoff P, Fabricius L, et al. Titanium dioxide nanoparticles in food and personal care products[J]. Environmental Science & Technology, 2012, 46(4):2242-2250
Gendelman H E, Mosley R L, Boska M D, et al. The promise of nanoneuromedicine[J]. Nanomedicine, 2014, 9(2):171-176
Siddiqi K S, Husen A, Sohrab S S, et al. Recent status of nanomaterial fabrication and their potential applications in neurological disease management[J]. Nanoscale Research Letters, 2018, 13(1):231
Chang X R, Li J Y, Niu S Y, et al. Neurotoxicity of metal-containing nanoparticles and implications in glial cells[J]. Journal of Applied Toxicology, 2021, 41(1):65-81
徐莺莺, 林晓影, 陈春英. 影响纳米材料毒性的关键因素[J]. 科学通报, 2013, 58(24):2466-2478 Xu Y Y, Lin X Y, Chen C Y. Key factors influencing the toxicity of nanomaterials[J]. Chinese Science Bulletin, 2013, 58(24):2466-2478(in Chinese)
Barhoum A, García-Betancourt M L, Jeevanandam J, et al. Review on natural, incidental, bioinspired, and engineered nanomaterials:History, definitions, classifications, synthesis, properties, market, toxicities, risks, and regulations[J]. Nanomaterials, 2022, 12(2):177
Nel A, Xia T, Mädler L, et al. Toxic potential of materials at the nanolevel[J]. Science, 2006, 311(5761):622-627
Zhao F, Zhao Y, Liu Y, et al. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials[J]. Small, 2011, 7(10):1322-1337
Park E J, Bae E, Yi J, et al. Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles[J]. Environmental Toxicology and Pharmacology, 2010, 30(2):162-168
Champion J A, Mitragotri S. Role of target geometry in phagocytosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(13):4930-4934
Chithrani B D, Ghazani A A, Chan W C W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells[J]. Nano Letters, 2006, 6(4):662-668
Senthilkumar N, Sharma P K, Sood N, et al. Designing magnetic nanoparticles for in vivo applications and understanding their fate inside human body[J]. Coordination Chemistry Reviews, 2021, 445:214082
Qiu Y, Liu Y, Wang L M, et al. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods[J]. Biomaterials, 2010, 31(30):7606-7619
Li Y Y, Zhou Y L, Wang H Y, et al. Chirality of glutathione surface coating affects the cytotoxicity of quantum dots[J]. Angewandte Chemie, 2011, 50(26):5860-5864
Zhai W Y, He C L, Wu L, et al. Degradation of hollow mesoporous silica nanoparticles in human umbilical vein endothelial cells[J]. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 2012, 100(5):1397-1403
Chiou B, Connor J R. Emerging and dynamic biomedical uses of ferritin[J]. Pharmaceuticals, 2018, 11(4):124
Qu Y, Li W, Zhou Y L, et al. Full assessment of fate and physiological behavior of quantum dots utilizing Caenorhabditis elegans as a model organism[J]. Nano Letters, 2011, 11(8):3174-3183
Gliga A R, Skoglund S, Wallinder I O, et al. Size-dependent cytotoxicity of silver nanoparticles in human lung cells:The role of cellular uptake, agglomeration and Ag release[J]. Particle and Fibre Toxicology, 2014, 11:11
Ge D, Du Q Q, Ran B Q, et al. The neurotoxicity induced by engineered nanomaterials[J]. International Journal of Nanomedicine, 2019, 14:4167-4186
Ballabh P, Braun A, Nedergaard M. The blood-brain barrier:An overview:Structure, regulation, and clinical implications[J]. Neurobiology of Disease, 2004, 16(1):1-13
Karmakar A, Zhang Q L, Zhang Y B. Neurotoxicity of nanoscale materials[J]. Journal of Food and Drug Analysis, 2014, 22(1):147-160
Lovisolo D, Dionisi M, Ruffinatti F A, et al. Nanoparticles and potential neurotoxicity:Focus on molecular mechanisms[J]. AIMS Molecular Science, 2018, 5(1):1-13
Yamashita K, Yoshioka Y, Higashisaka K, et al. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice[J]. Nature Nanotechnology, 2011, 6(5):321-328
Korzeniowska B, Fonseca M P, Gorshkov V, et al. The cytotoxicity of metal nanoparticles depends on their synergistic interactions[J]. Particle & Particle Systems Characterization, 2020, 37(8):2000135
Hu Q L, Guo F L, Zhao F H, et al. Effects of titanium dioxide nanoparticles exposure on Parkinsonism in zebrafish larvae and PC12[J]. Chemosphere, 2017, 173:373-379
Lv M, Zhang Y J, Liang L, et al. Effect of graphene oxide on undifferentiated and retinoic acid-differentiated SH-SY5Y cells line[J]. Nanoscale, 2012, 4(13):3861-3866
Guo Z L, Zhang P, Chetwynd A J, et al. Elucidating the mechanism of the surface functionalization dependent neurotoxicity of graphene family nanomaterials[J]. Nanoscale, 2020, 12(36):18600-18605
Wei L M, Wang J F, Chen A J, et al. Involvement of PINK1/parkin-mediated mitophagy in ZnO nanoparticle-induced toxicity in BV-2 cells[J]. International Journal of Nanomedicine, 2017, 12:1891-1903
Sharma A K, Singh V, Gera R, et al. Zinc oxide nanoparticle induces microglial death by NADPH-oxidase-independent reactive oxygen species as well as energy depletion[J]. Molecular Neurobiology, 2017, 54(8):6273-6286
Li P, Xu T T, Wu S Y, et al. Chronic exposure to graphene-based nanomaterials induces behavioral deficits and neural damage in Caenorhabditis elegans[J]. Journal of Applied Toxicology, 2017, 37(10):1140-1150
Hu X G, Wei Z, Mu L. Graphene oxide nanosheets at trace concentrations elicit neurotoxicity in the offspring of zebrafish[J]. Carbon, 2017, 117:182-191
Shah S A, Yoon G H, Ahmad A, et al. Nanoscale-alumina induces oxidative stress and accelerates amyloid beta (Aβ) production in ICR female mice[J]. Nanoscale, 2015, 7(37):15225-15237
Zhang L L, Bai R, Li B, et al. Rutile TiO2 particles exert size and surface coating dependent retention and lesions on the murine brain[J]. Toxicology Letters, 2011, 207(1):73-81
Wu J, Wang C, Sun J, et al. Neurotoxicity of silica nanoparticles:Brain localization and dopaminergic neurons damage pathways[J]. ACS Nano, 2011, 5(6):4476-4489
Neves A R, Queiroz J F, Lima S A C, et al. Apo E-functionalization of solid lipid nanoparticles enhances brain drug delivery:Uptake mechanism and transport pathways[J]. Bioconjugate Chemistry, 2017, 28(4):995-1004
Mendonça M C, Soares E S, de Jesus M B, et al. Reduced graphene oxide induces transient blood-brain barrier opening:An in vivo study[J]. Journal of Nanobiotechnology, 2015, 13:78
Liu X, Sui B Y, Sun J. Blood-brain barrier dysfunction induced by silica NPs in vitro and in vivo:Involvement of oxidative stress and Rho-kinase/JNK signaling pathways[J]. Biomaterials, 2017, 121:64-82
Kafa H, Wang J T, Rubio N, et al. Translocation of LRP1 targeted carbon nanotubes of different diameters across the blood-brain barrier in vitro and in vivo[J]. Journal of Controlled Release:Official Journal of the Controlled Release Society, 2016, 225:217-229
Huang R Q, Ke W L, Han L, et al. Brain-targeting mechanisms of lactoferrin-modified DNA-loaded nanoparticles[J]. Journal of Cerebral Blood Flow and Metabolism:Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 2009, 29(12):1914-1923
Quevedo A C, Iseult L, Eugenia V. Mechanisms of silver nanoparticle uptake by embryonic zebrafish cells[J]. Nanomaterials, 2021, 11(10):2699
Kumari M, Rajak S, Singh S P, et al. Repeated oral dose toxicity of iron oxide nanoparticles:Biochemical and histopathological alterations in different tissues of rats[J]. Journal of Nanoscience and Nanotechnology, 2012, 12(3):2149-2159
Hong F S, Sheng L, Ze Y G, et al. Suppression of neurite outgrowth of primary cultured hippocampal neurons is involved in impairment of glutamate metabolism and NMDA receptor function caused by nanoparticulate TiO2[J]. Biomaterials, 2015, 53:76-85
Guo D D, Bi H S, Wang D G, et al. Zinc oxide nanoparticles decrease the expression and activity of plasma membrane calcium ATPase, disrupt the intracellular calcium homeostasis in rat retinal ganglion cells[J]. The International Journal of Biochemistry & Cell Biology, 2013, 45(8):1849-1859
Setyawati M I, Yuan X, Xie J P, et al. The influence of lysosomal stability of silver nanomaterials on their toxicity to human cells[J]. Biomaterials, 2014, 35(25):6707-6715
Mao B H, Tsai J C, Chen C W, et al. Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy[J]. Nanotoxicology, 2016, 10(8):1021-1040
Fu P P, Xia Q S, Hwang H M, et al. Mechanisms of nanotoxicity:Generation of reactive oxygen species[J]. Journal of Food and Drug Analysis, 2014, 22(1):64-75
Phenrat T, Long T C, Lowry G V, et al. Partial oxidation ("aging") and surface modification decrease the toxicity of nanosized zerovalent iron[J]. Environmental Science & Technology, 2009, 43(1):195-200
Long T C, Saleh N, Tilton R D, et al. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2):Implications for nanoparticle neurotoxicity[J]. Environmental Science & Technology, 2006, 40(14):4346-4352
Huerta-García E, Pérez-Arizti J A, Márquez-Ramírez S G, et al. Titanium dioxide nanoparticles induce strong oxidative stress and mitochondrial damage in glial cells[J]. Free Radical Biology & Medicine, 2014, 73:84-94
Costa C S, Ronconi J V, Daufenbach J F, et al. In vitro effects of silver nanoparticles on the mitochondrial respiratory chain[J]. Molecular and Cellular Biochemistry, 2010, 342(1-2):51-56
Ziemińska E, Stafiej A, Strużyńska L. The role of the glutamatergic NMDA receptor in nanosilver-evoked neurotoxicity in primary cultures of cerebellar granule cells[J]. Toxicology, 2014, 315:38-48
Xie H J, Wu J. Silica nanoparticles induce alpha-synuclein induction and aggregation in PC12-cells[J]. Chemico-Biological Interactions, 2016, 258:197-204
Geppert M, Hohnholt M C, Nürnberger S, et al. Ferritin up-regulation and transient ROS production in cultured brain astrocytes after loading with iron oxide nanoparticles[J]. Acta Biomaterialia, 2012, 8(10):3832-3839
Chen Z W, Yin J J, Zhou Y T, et al. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity[J]. ACS Nano, 2012, 6(5):4001-4012
Stern S T, Adiseshaiah P P, Crist R M. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity[J]. Particle and Fibre Toxicology, 2012, 9:20
Luther E M, Petters C, Bulcke F, et al. Endocytotic uptake of iron oxide nanoparticles by cultured brain microglial cells[J]. Acta Biomaterialia, 2013, 9(9):8454-8465
Hsiao I L, Chang C C, Wu C Y, et al. Indirect effects of TiO2 nanoparticle on neuron-glial cell interactions[J]. Chemico-Biological Interactions, 2016, 254:34-44
Moquin A, Hutter E, Choi A O, et al. Caspase-1 activity in microglia stimulated by pro-inflammagen nanocrystals[J]. ACS Nano, 2013, 7(11):9585-9598
Ye D, Raghnaill M N, Bramini M, et al. Nanoparticle accumulation and transcytosis in brain endothelial cell layers[J]. Nanoscale, 2013, 5(22):11153-11165
Erriquez J, Bolis V, Morel S, et al. Nanosized TiO2 is internalized by dorsal root ganglion cells and causes damage via apoptosis[J]. Nanomedicine:Nanotechnology, Biology, and Medicine, 2015, 11(6):1309-1319
Petters C, Thiel K, Dringen R. Lysosomal iron liberation is responsible for the vulnerability of brain microglial cells to iron oxide nanoparticles:Comparison with neurons and astrocytes[J]. Nanotoxicology, 2016, 10(3):332-342
Ze Y G, Sheng L, Zhao X Y, et al. TiO2 nanoparticles induced hippocampal neuroinflammation in mice[J]. PLoS One, 2014, 9(3):e92230
El-Ghor A A, Noshy M M, Galal A, et al. Normalization of nano-sized TiO2-induced clastogenicity, genotoxicity and mutagenicity by chlorophyllin administration in mice brain, liver, and bone marrow cells[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2014, 142(1):21-32
Asharani P, Sethu S, Lim H K, et al. Differential regulation of intracellular factors mediating cell cycle, DNA repair and inflammation following exposure to silver nanoparticles in human cells[J]. Genome Integrity, 2012, 3(1):2
Verano-Braga T, Miethling-Graff R, Wojdyla K, et al. Insights into the cellular response triggered by silver nanoparticles using quantitative proteomics[J]. ACS Nano, 2014, 8(3):2161-2175
He K Y, Liang X, Wei T T, et al. DNA damage in BV-2 cells:An important supplement to the neurotoxicity of CdTe quantum dots[J]. Journal of Applied Toxicology, 2019, 39(3):525-539
Valdiglesias V, Costa C, Kiliç G, et al. Neuronal cytotoxicity and genotoxicity induced by zinc oxide nanoparticles[J]. Environment International, 2013, 55:92-100
Valdiglesias V, Costa C, Sharma V, et al. Comparative study on effects of two different types of titanium dioxide nanoparticles on human neuronal cells[J]. Food and Chemical Toxicology, 2013, 57:352-361
Wang J T, Deng X B, Zhang F, et al. ZnO nanoparticle-induced oxidative stress triggers apoptosis by activating JNK signaling pathway in cultured primary astrocytes[J]. Nanoscale Research Letters, 2014, 9(1):117
Zhang R, Piao M J, Kim K C, et al. Endoplasmic reticulum stress signaling is involved in silver nanoparticles-induced apoptosis[J]. The International Journal of Biochemistry & Cell Biology, 2012, 44(1):224-232
Simard J C, Vallieres F, de Liz R, et al. Silver nanoparticles induce degradation of the endoplasmic reticulum stress sensor activating transcription factor-6 leading to activation of the NLRP-3 inflammasome[J]. The Journal of Biological Chemistry, 2015, 290(9):5926-5939
Zhang Q L, Li M Q, Ji J W, et al. In vivo toxicity of nano-alumina on mice neurobehavioral profiles and the potential mechanisms[J]. International Journal of Immunopathology and Pharmacology, 2011, 24(1 Suppl.):23S-29S
Sun C, Yin N Y, Wen R X, et al. Silver nanoparticles induced neurotoxicity through oxidative stress in rat cerebral astrocytes is distinct from the effects of silver ions[J]. Neurotoxicology, 2016, 52:210-221
Song B, Zhang Y L, Liu J, et al. Unraveling the neurotoxicity of titanium dioxide nanoparticles:Focusing on molecular mechanisms[J]. Beilstein Journal of Nanotechnology, 2016, 7:645-654
Li J J, Hartono D, Ong C N, et al. Autophagy and oxidative stress associated with gold nanoparticles[J]. Biomaterials, 2010, 31(23):5996-6003
Halamoda Kenzaoui B, Chapuis Bernasconi C, Guney-Ayra S, et al. Induction of oxidative stress, lysosome activation and autophagy by nanoparticles in human brain-derived endothelial cells[J]. The Biochemical Journal, 2012, 441(3):813-821
Gong C M, Tao G H, Yang L Q, et al. Methylation of PARP-1 promoter involved in the regulation of nano-SiO2-induced decrease of PARP-1 mRNA expression[J]. Toxicology Letters, 2012, 209(3):264-269
Gong C M, Tao G H, Yang L Q, et al. SiO2 nanoparticles induce global genomic hypomethylation in HaCaT cells[J]. Biochemical and Biophysical Research Communications, 2010, 397(3):397-400
Chen Y, Xu M, Zhang J, et al. Genome-wide DNA methylation variations upon exposure to engineered nanomaterials and their implications in nanosafety assessment[J]. Advanced Materials, 2017, 29(6):1604580