Zhu Y Y, Cheng S, Wang P, et al. A possible environmental-friendly removal of Microcystis aeruginosa by using pyroligneous acid[J]. Ecotoxicology and Environmental Safety, 2020, 205:111159
Wang R, Hua M, Yu Y, et al. Evaluating the effects of allelochemical ferulic acid on Microcystis aeruginosa by pulse-amplitude-modulated (PAM) fluorometry and flow cytometry[J]. Chemosphere, 2016, 147:264-271
Ni L X, Rong S Y, Gu G X, et al. Inhibitory effect and mechanism of linoleic acid sustained-release microspheres on Microcystis aeruginosa at different growth phases[J]. Chemosphere, 2018, 212:654-661
Cao Q, Steinman A D, Su X M, et al. Effects of microcystins contamination on soil enzyme activities and microbial community in two typical lakeside soils[J]. Environmental Pollution, 2017, 231(Pt 1):134-142
Kumar P, Hegde K, Brar S K, et al. Potential of biological approaches for cyanotoxin removal from drinking water:A review[J]. Ecotoxicology and Environmental Safety, 2019, 172:488-503
Zhang L, Liu J T, Zhang D W, et al. Seasonal and spatial variations of microcystins in Poyang Lake, the largest freshwater lake in China[J]. Environmental Science and Pollution Research International, 2018, 25(7):6300-6307
Tillett D, Dittmann E, Erhard M, et al. Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806:An integrated peptide-polyketide synthetase system[J]. Chemistry & Biology, 2000, 7(10):753-764
Mulderij G, van Nes E H, van Donk E. Macrophyte-phytoplankton interactions:The relative importance of allelopathy versus other factors[J]. Ecological Modelling, 2007, 204(1-2):85-92
Kong C H, Xuan T D, Khanh T D, et al. Allelochemicals and signaling chemicals in plants[J]. Molecules, 2019, 24(15):2737
孔垂华. 植物种间和种内的化学作用[J]. 应用生态学报, 2020, 31(7):2141-2150 Kong C H. Inter-specific and intra-specific chemical interactions among plants[J]. Chinese Journal of Applied Ecology, 2020, 31(7):2141-2150(in Chinese)
Rice E L. Allelopathy[M]. 2nd ed. Orlando:Academic Press, 1984:119
Schreidah C M, Ratnayake K, Senarath K, et al. Microcystins:Biogenesis, toxicity, analysis, and control[J]. Chemical Research in Toxicology, 2020, 33(9):2225-2246
Xian Q M, Chen H D, Liu H L, et al. Isolation and identification of antialgal compounds from the leaves of Vallisneria spiralis L. by activity-guided fractionation[J]. Environmental Science and Pollution Research International, 2006, 13(4):233-237
Park M H, Chung I M, Ahmad A, et al. Growth inhibition of unicellular and colonial Microcystis strains (Cyanophyceae) by compounds isolated from rice (Oryza sativa) hulls[J]. Aquatic Botany, 2009, 90(4):309-314
Li B H, Yin Y J, Kang L F, et al. A review:Application of allelochemicals in water ecological restoration:Algal inhibition[J]. Chemosphere, 2021, 267:128869
Zhu X Q, Dao G H, Tao Y, et al. A review on control of harmful algal blooms by plant-derived allelochemicals[J]. Journal of Hazardous Materials, 2021, 401:123403
张庭廷, 韩玉珍, 何宗祥, 等. 酚酸类物质对铜绿微囊藻以及蛋白核小球藻的抑藻作用[J]. 卫生研究, 2016, 45(3):448-451 , 457 Zhang T T, Han Y Z, He Z X, et al. Joint inhibitory effects researches on Microcystis aeruginosa and Chlorella pyrenoidosa of phenolic acids[J]. Journal of Hygiene Research, 2016, 45(3):448-451, 457(in Chinese)
高云霓, 刘碧云, 王静, 等. 苦草(Vallisneria spiralis)释放的酚酸类物质对铜绿微囊藻(Microcystis aeruginosa)的化感作用[J]. 湖泊科学, 2011, 23(5):761-766 Gao Y N, Liu B Y, Wang J, et al. Allelopathic effects of phenolic compounds released by Vallisneria spiralis on Microcystis aeruginosa[J]. Journal of Lake Sciences, 2011, 23(5):761-766(in Chinese)
Li M, Wei D B, Zhao H M, et al. Genotoxicity of quinolones:Substituents contribution and transformation products QSAR evaluation using 2D and 3D models[J]. Chemosphere, 2014, 95:220-226
魏东斌, 赵慧敏, 杜宇国. 二苯甲酮类紫外防晒剂发光菌急性毒性及QSAR研究[J]. 生态毒理学报, 2017, 12(3):234-242 Wei D B, Zhao H M, Du Y G. Acute toxicity and QSAR studies on benzophenone-type UV-filters to Photobacterium[J]. Asian Journal of Ecotoxicology, 2017, 12(3):234-242(in Chinese)
马舒颖. 化合物安全风险评估的QSAR/QSPR研究[D]. 兰州:兰州大学, 2015:13-15 Ma S Y. Studies of QSAR/QSPR for the risk assessment of chemicals[D]. Lanzhou:Lanzhou University, 2015:13 -15(in Chinese)
钱燕萍, 赵楚, 田如男. 水生植物对藻类的化感作用研究进展[J]. 生物学杂志, 2018, 35(6):95-97 Qian Y P, Zhao C, Tian R N. Research advances in inhibitory effects on phytoplankton mediated by aquatic plants[J]. Journal of Biology, 2018, 35(6):95-97(in Chinese)
Nakai S, Inoue Y, Hosomi M. Algal growth inhibition effects and inducement modes by plant-producing phenols[J]. Water Research, 2001, 35(7):1855-1859
Gao Y N, Ge F J, Zhang L P, et al. Enhanced toxicity to the cyanobacterium Microcystis aeruginosa by low-dosage repeated exposure to the allelochemical N-phenyl-1-naphthylamine[J]. Chemosphere, 2017, 174:732-738
Lu Z Y, Liu B Y, He Y, et al. Effects of daily exposure of cyanobacterium and chlorophyte to low-doses of pyrogallol[J]. Allelopathy Journal, 2014, 34(2):195-205
Laue P, Bährs H, Chakrabarti S, et al. Natural xenobiotics to prevent cyanobacterial and algal growth in freshwater:Contrasting efficacy of tannic acid, gallic acid, and gramine[J]. Chemosphere, 2014, 104:212-220
胡利静, 童桂香, 黄光华, 等. 水杨酸对铜绿微囊藻的化感抑制作用[J]. 南方农业学报, 2017, 48(1):169-173 Hu L J, Tong G X, Huang G H, et al. Allelopathy inhibition of salicylic acid on Microcystis aeruginosa[J]. Journal of Southern Agriculture, 2017, 48(1):169-173(in Chinese)
赵楚, 钱燕萍, 田如男. 梭鱼草化感物质丁二酸、肉桂酸及香草酸对铜绿微囊藻生长的抑制效应[J]. 浙江农林大学学报, 2020, 37(6):1105-1111 Zhao C, Qian Y P, Tian R N. Inhibitory effect of succinic acid, cinnamic acid and vanillic acid from Pontederia cordata on Microcystis aeruginosa[J]. Journal of Zhejiang A& F University, 2020, 37(6):1105-1111(in Chinese)
朱小琴, 刀国华, 陶益, 等. 典型植物化感物质对铜绿微囊藻生长的抑制效果评价[J]. 中国环境科学, 2020, 40(5):2230-2237 Zhu X Q, Dao G H, Tao Y, et al. Evaluation of growth inhibition of typical plant-derived allelochemicals on Microcystis aeruginosa[J]. China Environmental Science, 2020, 40(5):2230-2237(in Chinese)
Hardy J T, Dauble D D, Felice L J. Aquatic fate of synfuel residuals:Bioaccumulation of aniline and phenol by the freshwater phytoplankter Scenedesmus quadricauda[J]. Environmental Toxicology and Chemistry, 1985, 4(1):29
Newsted J L. Effect of light, temperature, and pH on the accumulation of phenol by Selenastrum capricornutum, a green alga[J]. Ecotoxicology and Environmental Safety, 2004, 59(2):237-243
Lika K, Papadakis I A. Modeling the biodegradation of phenolic compounds by microalgae[J]. Journal of Sea Research, 2009, 62(2-3):135-146
Papazi A, Kotzabasis K. Bioenergetic strategy of microalgae for the biodegradation of phenolic compounds:Exogenously supplied energy and carbon sources adjust the level of biodegradation[J]. Journal of Biotechnology, 2007, 129(4):706-716
Herrera N, Florez M, Velasquez J, et al. Effect of phenyl-acyl compounds on the growth, morphology, and toxin production of Microcystis aeruginosa Kü tzing[J]. Water, 2019, 11(2):236