利用分子相似性指数法构建酚酸类物质抑制铜绿微囊藻的剂量效应关系
Dose-effect of Phenolic Acids to Microcystis aeruginosa by Comparative Molecular Similarity Index Analysis
-
摘要: 为揭示酚酸类化感物质对铜绿微囊藻的化感调控作用,研究了20种常见酚酸对铜绿微囊藻生长和繁殖的剂量效应,并运用比较分子相似性指数法(comparative molecular similarity index,CoMSIA)进行构效关系研究。结果发现,酚酸化合物对铜绿微囊藻化感抑制作用的半数效应浓度(EC50)范围为4.90~194.59 mg·L-1;CoMSIA结果表明,运用静电场和H键供体场能较好解释该类化合物对铜绿微囊藻的化感抑制特征,减小苯环1位取代基的负电性、增加苯环3或4位取代基的H键供体性能,有利于提高酚酸类化合物的化感抑藻活性。Abstract: This study aimed to elucidate the allelopathic effects of phenolic acids to Microcystis aeruginosa by investigating the dose-effect of 20 phenolic acids on the growth and reproduction of M. aeruginosa. The phenolic acid structure-activity (of M. aeruginosa) relationship was studied by comparative molecular similarity index (CoMSIA). The results showed the half maximal effective concentration (EC50) of phenolic acids to M. aeruginosa ranged from 4.90 mg·L-1 to 194.59 mg·L-1. The electrostatic field and H bond donor field could explain the inhibition characteristics effectively; it was beneficial to improve the inhibition activity of phenolic acids by reducing the electronegativity of benzene ring substituents at position one, or increasing the H bond donor properties of benzene ring substituents at positions three or four.
-
Key words:
- phenolic acids /
- Microcystis aeruginosa /
- dose-effect /
- allelopathy /
- structure-activity relationship
-
-
Zhu Y Y, Cheng S, Wang P, et al. A possible environmental-friendly removal of Microcystis aeruginosa by using pyroligneous acid[J]. Ecotoxicology and Environmental Safety, 2020, 205:111159 Wang R, Hua M, Yu Y, et al. Evaluating the effects of allelochemical ferulic acid on Microcystis aeruginosa by pulse-amplitude-modulated (PAM) fluorometry and flow cytometry[J]. Chemosphere, 2016, 147:264-271 Ni L X, Rong S Y, Gu G X, et al. Inhibitory effect and mechanism of linoleic acid sustained-release microspheres on Microcystis aeruginosa at different growth phases[J]. Chemosphere, 2018, 212:654-661 Cao Q, Steinman A D, Su X M, et al. Effects of microcystins contamination on soil enzyme activities and microbial community in two typical lakeside soils[J]. Environmental Pollution, 2017, 231(Pt 1):134-142 Kumar P, Hegde K, Brar S K, et al. Potential of biological approaches for cyanotoxin removal from drinking water:A review[J]. Ecotoxicology and Environmental Safety, 2019, 172:488-503 Zhang L, Liu J T, Zhang D W, et al. Seasonal and spatial variations of microcystins in Poyang Lake, the largest freshwater lake in China[J]. Environmental Science and Pollution Research International, 2018, 25(7):6300-6307 Tillett D, Dittmann E, Erhard M, et al. Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806:An integrated peptide-polyketide synthetase system[J]. Chemistry & Biology, 2000, 7(10):753-764 Mulderij G, van Nes E H, van Donk E. Macrophyte-phytoplankton interactions:The relative importance of allelopathy versus other factors[J]. Ecological Modelling, 2007, 204(1-2):85-92 Kong C H, Xuan T D, Khanh T D, et al. Allelochemicals and signaling chemicals in plants[J]. Molecules, 2019, 24(15):2737 孔垂华. 植物种间和种内的化学作用[J]. 应用生态学报, 2020, 31(7):2141-2150 Kong C H. Inter-specific and intra-specific chemical interactions among plants[J]. Chinese Journal of Applied Ecology, 2020, 31(7):2141-2150(in Chinese)
Rice E L. Allelopathy[M]. 2nd ed. Orlando:Academic Press, 1984:119 Schreidah C M, Ratnayake K, Senarath K, et al. Microcystins:Biogenesis, toxicity, analysis, and control[J]. Chemical Research in Toxicology, 2020, 33(9):2225-2246 Xian Q M, Chen H D, Liu H L, et al. Isolation and identification of antialgal compounds from the leaves of Vallisneria spiralis L. by activity-guided fractionation[J]. Environmental Science and Pollution Research International, 2006, 13(4):233-237 Park M H, Chung I M, Ahmad A, et al. Growth inhibition of unicellular and colonial Microcystis strains (Cyanophyceae) by compounds isolated from rice (Oryza sativa) hulls[J]. Aquatic Botany, 2009, 90(4):309-314 Li B H, Yin Y J, Kang L F, et al. A review:Application of allelochemicals in water ecological restoration:Algal inhibition[J]. Chemosphere, 2021, 267:128869 Zhu X Q, Dao G H, Tao Y, et al. A review on control of harmful algal blooms by plant-derived allelochemicals[J]. Journal of Hazardous Materials, 2021, 401:123403 张庭廷, 韩玉珍, 何宗祥, 等. 酚酸类物质对铜绿微囊藻以及蛋白核小球藻的抑藻作用[J]. 卫生研究, 2016, 45(3):448-451 , 457 Zhang T T, Han Y Z, He Z X, et al. Joint inhibitory effects researches on Microcystis aeruginosa and Chlorella pyrenoidosa of phenolic acids[J]. Journal of Hygiene Research, 2016, 45(3):448-451, 457(in Chinese)
高云霓, 刘碧云, 王静, 等. 苦草(Vallisneria spiralis)释放的酚酸类物质对铜绿微囊藻(Microcystis aeruginosa)的化感作用[J]. 湖泊科学, 2011, 23(5):761-766 Gao Y N, Liu B Y, Wang J, et al. Allelopathic effects of phenolic compounds released by Vallisneria spiralis on Microcystis aeruginosa[J]. Journal of Lake Sciences, 2011, 23(5):761-766(in Chinese)
Li M, Wei D B, Zhao H M, et al. Genotoxicity of quinolones:Substituents contribution and transformation products QSAR evaluation using 2D and 3D models[J]. Chemosphere, 2014, 95:220-226 魏东斌, 赵慧敏, 杜宇国. 二苯甲酮类紫外防晒剂发光菌急性毒性及QSAR研究[J]. 生态毒理学报, 2017, 12(3):234-242 Wei D B, Zhao H M, Du Y G. Acute toxicity and QSAR studies on benzophenone-type UV-filters to Photobacterium[J]. Asian Journal of Ecotoxicology, 2017, 12(3):234-242(in Chinese)
马舒颖. 化合物安全风险评估的QSAR/QSPR研究[D]. 兰州:兰州大学, 2015:13-15 Ma S Y. Studies of QSAR/QSPR for the risk assessment of chemicals[D]. Lanzhou:Lanzhou University, 2015:13 -15(in Chinese)
钱燕萍, 赵楚, 田如男. 水生植物对藻类的化感作用研究进展[J]. 生物学杂志, 2018, 35(6):95-97 Qian Y P, Zhao C, Tian R N. Research advances in inhibitory effects on phytoplankton mediated by aquatic plants[J]. Journal of Biology, 2018, 35(6):95-97(in Chinese)
Nakai S, Inoue Y, Hosomi M. Algal growth inhibition effects and inducement modes by plant-producing phenols[J]. Water Research, 2001, 35(7):1855-1859 Gao Y N, Ge F J, Zhang L P, et al. Enhanced toxicity to the cyanobacterium Microcystis aeruginosa by low-dosage repeated exposure to the allelochemical N-phenyl-1-naphthylamine[J]. Chemosphere, 2017, 174:732-738 Lu Z Y, Liu B Y, He Y, et al. Effects of daily exposure of cyanobacterium and chlorophyte to low-doses of pyrogallol[J]. Allelopathy Journal, 2014, 34(2):195-205 Laue P, Bährs H, Chakrabarti S, et al. Natural xenobiotics to prevent cyanobacterial and algal growth in freshwater:Contrasting efficacy of tannic acid, gallic acid, and gramine[J]. Chemosphere, 2014, 104:212-220 胡利静, 童桂香, 黄光华, 等. 水杨酸对铜绿微囊藻的化感抑制作用[J]. 南方农业学报, 2017, 48(1):169-173 Hu L J, Tong G X, Huang G H, et al. Allelopathy inhibition of salicylic acid on Microcystis aeruginosa[J]. Journal of Southern Agriculture, 2017, 48(1):169-173(in Chinese)
赵楚, 钱燕萍, 田如男. 梭鱼草化感物质丁二酸、肉桂酸及香草酸对铜绿微囊藻生长的抑制效应[J]. 浙江农林大学学报, 2020, 37(6):1105-1111 Zhao C, Qian Y P, Tian R N. Inhibitory effect of succinic acid, cinnamic acid and vanillic acid from Pontederia cordata on Microcystis aeruginosa[J]. Journal of Zhejiang A& F University, 2020, 37(6):1105-1111(in Chinese)
朱小琴, 刀国华, 陶益, 等. 典型植物化感物质对铜绿微囊藻生长的抑制效果评价[J]. 中国环境科学, 2020, 40(5):2230-2237 Zhu X Q, Dao G H, Tao Y, et al. Evaluation of growth inhibition of typical plant-derived allelochemicals on Microcystis aeruginosa[J]. China Environmental Science, 2020, 40(5):2230-2237(in Chinese)
Hardy J T, Dauble D D, Felice L J. Aquatic fate of synfuel residuals:Bioaccumulation of aniline and phenol by the freshwater phytoplankter Scenedesmus quadricauda[J]. Environmental Toxicology and Chemistry, 1985, 4(1):29 Newsted J L. Effect of light, temperature, and pH on the accumulation of phenol by Selenastrum capricornutum, a green alga[J]. Ecotoxicology and Environmental Safety, 2004, 59(2):237-243 Lika K, Papadakis I A. Modeling the biodegradation of phenolic compounds by microalgae[J]. Journal of Sea Research, 2009, 62(2-3):135-146 Papazi A, Kotzabasis K. Bioenergetic strategy of microalgae for the biodegradation of phenolic compounds:Exogenously supplied energy and carbon sources adjust the level of biodegradation[J]. Journal of Biotechnology, 2007, 129(4):706-716 Herrera N, Florez M, Velasquez J, et al. Effect of phenyl-acyl compounds on the growth, morphology, and toxin production of Microcystis aeruginosa Kü tzing[J]. Water, 2019, 11(2):236 -

计量
- 文章访问数: 1583
- HTML全文浏览数: 1583
- PDF下载数: 62
- 施引文献: 0