Bergman Å, Heindel J, Jobling S, et al. State-of-the-science of endocrine disrupting chemicals, 2012[J]. Toxicology Letters, 2012, 211:S3
Koch C A, Diamanti-Kandarakis E. Introduction to endocrine disrupting chemicals-Is it time to act?[J]. Reviews in Endocrine and Metabolic Disorders, 2015, 16(4):269-270
Annamalai J, Namasivayam V. Endocrine disrupting chemicals in the atmosphere:Their effects on humans and wildlife[J]. Environment International, 2015, 76:78-97
Sun Y, Huang H, Sun Y, et al. Occurrence of estrogenic endocrine disrupting chemicals concern in sewage plant effluent[J]. Frontiers of Environmental Science & Engineering, 2014, 8(1):18-26
Futran Fuhrman V, Tal A, Arnon S. Why endocrine disrupting chemicals (EDCs) challenge traditional risk assessment and how to respond[J]. Journal of Hazardous Materials, 2015, 286:589-611
Wu S M, Su C K, Shu L H. Effects of calcium and estrogen on the development of the ceratohyal cartilage in zebrafish (Danio rerio) larvae upon embryo and maternal cadmium exposure[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2018, 213:47-54
Wang Y C, Shen C, Wang C G, et al. Maternal and embryonic exposure to the water soluble fraction of crude oil or lead induces behavioral abnormalities in zebrafish (Danio rerio), and the mechanisms involved[J]. Chemosphere, 2018, 191:7-16
Westerlund L, Billsson K, Andersson P. Early life-stage mortality in zebrafish (Danio rerio) following maternal exposure to polychlorinated biphenyls and estrogen[J]. Environmental Toxicology and Chemistry, 2000, 19(6):1582-1588
Wei P H, Zhao F, Zhang X N, et al. Transgenerational thyroid endocrine disruption induced by bisphenol S affects the early development of zebrafish offspring[J]. Environmental Pollution, 2018, 243:800-808
Schwindt A R. Parental effects of endocrine disrupting compounds in aquatic wildlife:Is there evidence of transgenerational inheritance?[J]. General and Comparative Endocrinology, 2015, 219:152-164
Skinner M K, Manikkam M, Guerrero-Bosagna C. Epigenetic transgenerational actions of endocrine disruptors[J]. Reproductive Toxicology, 2011, 31(3):337-343
Ke X, Gui S F, Huang H, et al. Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China[J]. Chemosphere, 2017, 175:473-481
Hassani G, Babaei A A, Takdastan A, et al. Occurrence and fate of 17β-estradiol in water resources and wastewater in Ahvaz, Iran[J]. Global Nest Journal, 2016, 18(4):855-866
陈茹. 珠江河口水体和沉积物中壬基酚和辛基酚的分布特征及风险评价[D]. 广州:暨南大学, 2014:28 Chen R. Distribution characteristics and risk assessment of nonylphenol and octylphenol in water and sediments from riverine runoff of the Pearl River Delta[D]. Guangzhou:Jinan University, 2014:28(in Chinese)
Rasmussen T H, Andreassen T K, Pedersen S N, et al. Effects of waterborne exposure of octylphenol and oestrogen on pregnant viviparous eelpout (Zoarces viviparus) and her embryos in ovario[J]. The Journal of Experimental Biology, 2002, 205(Pt 24):3857-3876
Kang J H, Asai D, Katayama Y. Bisphenol A in the aquatic environment and its endocrine-disruptive effects on aquatic organisms[J]. Critical Reviews in Toxicology, 2007, 37(7):607-625
邵阳, 杨国胜, 刘韦华, 等. 北京地区地表水中OCPs和PCBs的污染分析[J]. 中国环境科学, 2016, 36(9):2606-2613 Shao Y, Yang G S, Liu W H, et al. The study of organochlorine pesticides and polychlorinated biphenyls in surface water around Beijing[J]. China Environmental Science, 2016, 36(9):2606-2613(in Chinese)
罗冬莲. 福建漳江口水环境中滴滴涕(DDTs)的分布与溯源[J]. 应用生态学报, 2014, 25(12):3664-3672 Luo D L. Distribution characteristics and source apportionment of dichloro-diphenyl-tricgloroethanes in Zhangjiang River Estuary of Fujian, China[J]. Chinese Journal of Applied Ecology, 2014, 25(12):3664-3672(in Chinese)
Metcalfe T L, Metcalfe C D, Kiparissis Y, et al. Gonadal development and endocrine responses in Japanese medaka (Oryzias latipes) exposed to o,p'-DDT in water or through maternal transfer[J]. Environmental Toxicology and Chemistry, 2000, 19(7):1893
Fan X T, Wu L, Hou T T, et al. Maternal bisphenol A exposure impaired endochondral ossification in craniofacial cartilage of rare minnow (Gobiocypris rarus) offspring[J]. Ecotoxicology and Environmental Safety, 2018, 163:514-520
Brustein E, Saint-Amant L, Buss R R, et al. Steps during the development of the zebrafish locomotor network[J]. Journal of Physiology-Paris, 2003, 97(1):77-86
Chen L G, Wang X F, Zhang X H, et al. Transgenerational endocrine disruption and neurotoxicity in zebrafish larvae after parental exposure to binary mixtures of decabromodiphenyl ether (BDE-209) and lead[J]. Environmental Pollution, 2017, 230:96-106
Schultz I R, Skillman A, Nicolas J M, et al. Short-term exposure to 17 alpha-ethynylestradiol decreases the fertility of sexually maturing male rainbow trout (Oncorhynchus mykiss)[J]. Environmental Toxicology and Chemistry, 2003, 22(6):1272-1280
Brown K H, Schultz I R, Nagler J J. Reduced embryonic survival in rainbow trout resulting from paternal exposure to the environmental estrogen 17alpha-ethynylestradiol during late sexual maturation[J]. Reproduction, 2007, 134(5):659-666
Brown K H, Schultz I R, Cloud J G, et al. Aneuploid sperm formation in rainbow trout exposed to the environmental estrogen 17{alpha}-ethynylestradiol[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(50):19786-19791
Nash J P, Kime D E, Van der Ven L T M, et al. Long-term exposure to environmental concentrations of the pharmaceutical ethynylestradiol causes reproductive failure in fish[J]. Environmental Health Perspectives, 2004, 112(17):1725-1733
Valcarce D G, Vuelta E, Robles V, et al. Paternal exposure to environmental 17-alpha-ethinylestradiol concentrations modifies testicular transcription, affecting the sperm transcript content and the offspring performance in zebrafish[J]. Aquatic Toxicology, 2017, 193:18-29
Lombó M, Fernández-Díez C, González-Rojo S, et al. Transgenerational inheritance of heart disorders caused by paternal bisphenol A exposure[J]. Environmental Pollution, 2015, 206:667-678
Dong X, Zhang Z, Meng S L, et al. Parental exposure to bisphenol A and its analogs influences zebrafish offspring immunity[J]. Science of the Total Environment, 2018, 610-611:291-297
Chen L G, Hu C Y, Guo Y Y, et al. TiO2 nanoparticles and BPA are combined to impair the development of offspring zebrafish after parental coexposure[J]. Chemosphere, 2019, 217:732-741
Soares J, Coimbra A M, Reis-Henriques M A, et al. Disruption of zebrafish (Danio rerio) embryonic development after full life-cycle parental exposure to low levels of ethinylestradiol[J]. Aquatic Toxicology, 2009, 95(4):330-338
Schwindt A R, Winkelman D L, Keteles K, et al. An environmental oestrogen disrupts fish population dynamics through direct and transgenerational effects on survival and fecundity[J]. Journal of Applied Ecology, 2014, 51(3):582-591
Zillioux E J, Johnson I C, Kiparissis Y, et al. The sheepshead minnow as an in vivo model for endocrine disruption in marine teleosts:A partial life-cycle test with 17alpha-ethynylestradiol[J]. Environmental Toxicology and Chemistry, 2001, 20(9):1968-1978
Hani Y M I, Turies C, Palluel O, et al. Effects of chronic exposure to cadmium and temperature, alone or combined, on the threespine stickleback (Gasterosteus aculeatus):Interest of digestive enzymes as biomarkers[J]. Aquatic Toxicology, 2018, 199:252-262
Kang I, Yokota H, Oshima Y, et al. Effects of 4-nonylphenol on reproduction of Japanese medaka, Oryzias latipes[J]. Environmental Toxicology and Chemistry:An International Journal, 2003, 22(10):2438-2445
Yang F X, Xu Y, Hui Y. Reproductive effects of prenatal exposure to nonylphenol on zebrafish (Danio rerio)[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2006, 142(1-2):77-84
Hill R L Jr, Janz D M. Developmental estrogenic exposure in zebrafish (Danio rerio):Ⅰ. Effects on sex ratio and breeding success[J]. Aquatic Toxicology, 2003, 63(4):417-429
Holdway D A, Hefferman J, Smith A. Multigeneration assessment of nonylphenol and endosulfan using a model Australian freshwater fish, Melanotaenia fluviatilis[J]. Environmental Toxicology, 2008, 23(2):253-262
Wang Y, Wang L, Chang W G, et al. Neurotoxic effects of perfluoroalkyl acids:Neurobehavioral deficit and its molecular mechanism[J]. Toxicology Letters, 2019, 305:65-72
Jin Y H, Liu W, Sato I, et al. PFOS and PFOA in environmental and tap water in China[J]. Chemosphere, 2009, 77(5):605-611
Wu J P, Luo X J, Zhang Y, et al. Bioaccumulation of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in wild aquatic species from an electronic waste (e-waste) recycling site in South China[J]. Environment International, 2008, 34(8):1109-1113
Yu L Q, Lam J C W, Guo Y Y, et al. Parental transfer of polybrominated diphenyl ethers (PBDEs) and thyroid endocrine disruption in zebrafish[J]. Environmental Science & Technology, 2011, 45(24):10652-10659
Zhao X S, Ren X, Ren B X, et al. Life-cycle exposure to BDE-47 results in thyroid endocrine disruption to adults and offsprings of zebrafish (Danio rerio)[J]. Environmental Toxicology and Pharmacology, 2016, 48:157-167
Han Z H, Li Y F, Zhang S H, et al. Prenatal transfer of decabromodiphenyl ether (BDE-209) results in disruption of the thyroid system and developmental toxicity in zebrafish offspring[J]. Aquatic Toxicology, 2017, 190:46-52
Guo Y Y, Chen L G, Wu J, et al. Parental co-exposure to bisphenol A and nano-TiO2 causes thyroid endocrine disruption and developmental neurotoxicity in zebrafish offspring[J]. Science of the Total Environment, 2019, 650:557-565
Inagaki T, Smith N L, Sherva K M, et al. Cross-generational effects of parental low dose BPA exposure on the Gonadotropin-Releasing Hormone3 system and larval behavior in medaka (Oryzias latipes)[J]. Neurotoxicology, 2016, 57:163-173
Chen L G, Yu K, Huang C J, et al. Prenatal transfer of polybrominated diphenyl ethers (PBDEs) results in developmental neurotoxicity in zebrafish larvae[J]. Environmental Science & Technology, 2012, 46(17):9727-9734
He J H, Yang D R, Wang C Y, et al. Chronic zebrafish low dose decabrominated diphenyl ether (BDE-209) exposure affected parental gonad development and locomotion in F1 offspring[J]. Ecotoxicology, 2011, 20(8):1813-1822
Chen J F, Das S R, Du J L, et al. Chronic PFOS exposures induce life stage-specific behavioral deficits in adult zebrafish and produce malformation and behavioral deficits in F1 offspring[J]. Environmental Toxicology and Chemistry, 2013, 32(1):201-206
Risch M R, Gay D A, Fowler K K, et al. Spatial patterns and temporal trends in mercury concentrations, precipitation depths, and mercury wet deposition in the North American Great Lakes region, 2002-2008[J]. Environmental Pollution, 2012, 161:261-271
何天容, 吴玉勇, 冯新斌. 富营养化对贵州红枫湖水库汞形态和分布特征的影响[J]. 湖泊科学, 2010, 22(2):208-214 He T R, Wu Y Y, Feng X B. The impact of eutrophication on distribution and speciation of mercury in Hongfeng Reservoir, Guizhou Province[J]. Journal of Lake Sciences, 2010, 22(2):208-214(in Chinese)
Mora-Zamorano F X, Klingler R, Murphy C A, et al. Parental whole life cycle exposure to dietary methylmercury in zebrafish (Danio rerio) affects the behavior of offspring[J]. Environmental Science & Technology, 2016, 50(9):4808-4816
Alvarez M D C, Murphy C A, Rose K A, et al. Maternal body burdens of methylmercury impair survival skills of offspring in Atlantic croaker (Micropogonias undulatus)[J]. Aquatic Toxicology, 2006, 80(4):329-337
Volkova K, Reyhanian Caspillo N, Porseryd T, et al. Developmental exposure of zebrafish (Danio rerio) to 17α-ethinylestradiol affects non-reproductive behavior and fertility as adults, and increases anxiety in unexposed progeny[J]. Hormones and Behavior, 2015, 73:30-38
Volkova K, Reyhanian Caspillo N, Porseryd T, et al. Transgenerational effects of 17α-ethinyl estradiol on anxiety behavior in the guppy, Poecilia reticulata[J]. General and Comparative Endocrinology, 2015, 223:66-72
Seki M, Yokota H, Maeda M, et al. Fish full life-cycle testing for 17β-estradiol on medaka (Oryzias latipes)[J]. Environmental Toxicology and Chemistry, 2005, 24(5):1259-1266
Raimondo S, Hemmer B L, Goodman L R, et al. Multigenerational exposure of the estuarine sheepshead minnow (Cyprinodon variegatus) to 17β-estradiol. Ⅱ. Population-level effects through two life cycles[J]. Environmental Toxicology and Chemistry, 2009, 28(11):2409-2415
Schäfers C, Teigeler M, Wenzel A, et al. Concentration- and time-dependent effects of the synthetic estrogen, 17alpha-ethinylestradiol, on reproductive capabilities of the zebrafish, Danio rerio[J]. Journal of Toxicology and Environmental Health Part A, 2007, 70(9):768-779
Yokota H, Seki M, Maeda M, et al. Life-cycle toxicity of 4-nonylphenol to medaka (Oryzias latipes)[J]. Environmental Toxicology and Chemistry, 2001, 20(11):2552
Matta M B, Linse J, Cairncross C, et al. Reproductive and transgenerational effects of methylmercury or aroclor 1268 on Fundulus heteroclitus[J]. Environmental Toxicology and Chemistry, 2001, 20(2):327-335
Chen J F, Xiao Y Y, Gai Z X, et al. Reproductive toxicity of low level bisphenol A exposures in a two-generation zebrafish assay:Evidence of male-specific effects[J]. Aquatic Toxicology, 2015, 169:204-214
Wang M Y, Chen J F, Lin K F, et al. Chronic zebrafish PFOS exposure alters sex ratio and maternal related effects in F1 offspring[J]. Environmental Toxicology and Chemistry, 2011, 30(9):2073-2080
Shi G H, Wang J X, Guo H, et al. Parental exposure to 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) induced transgenerational thyroid hormone disruption in zebrafish[J]. Science of the Total Environment, 2019, 665:855-863
Xu C, Niu L L, Liu J S, et al. Maternal exposure to fipronil results in sulfone metabolite enrichment and transgenerational toxicity in zebrafish offspring:Indication for an overlooked risk in maternal transfer?[J]. Environmental Pollution, 2019, 246:876-884
Cheng H C, Yan W, Wu Q, et al. Parental exposure to microcystin-LR induced thyroid endocrine disruption in zebrafish offspring, a transgenerational toxicity[J]. Environmental Pollution, 2017, 230:981-988
Zhang Y K, Su G Y, Li M, et al. Chemical and biological transfer:Which one is responsible for the maternal transfer toxicity of tris(1,3-dichloro-2-propyl) phosphate in zebrafish?[J]. Environmental Pollution, 2018, 243:1376-1382
Power D M, Llewellyn L, Faustino M, et al. Thyroid hormones in growth and development of fish[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2001, 130(4):447-459
Miccoli A, Dalla Valle L, Carnevali O. The maternal control in the embryonic development of zebrafish[J]. General and Comparative Endocrinology, 2017, 245:55-68
Sopinka N M, Capelle P M, Semeniuk C A D, et al. Glucocorticoids in fish eggs:Variation, interactions with the environment, and the potential to shape offspring fitness[J]. Physiological and Biochemical Zoology:PBZ, 2017, 90(1):15-33
Bird A. DNA methylation patterns and epigenetic memory[J]. Genes & Development, 2002, 16(1):6-21
Youngson N A, Whitelaw E. Transgenerational epigenetic effects[J]. Annual Review of Genomics and Human Genetics, 2008, 9:233-257
Head J A. Patterns of DNA methylation in animals:An ecotoxicological perspective[J]. Integrative and Comparative Biology, 2014, 54(1):77-86
Cavalieri V, Spinelli G. Environmental epigenetics in zebrafish[J]. Epigenetics & Chromatin, 2017, 10(1):46
Kamstra J H, Sales L B, Aleström P, et al. Differential DNA methylation at conserved non-genic elements and evidence for transgenerational inheritance following developmental exposure to mono(2-ethylhexyl) phthalate and 5-azacytidine in zebrafish[J]. Epigenetics & Chromatin, 2017, 10:20
Carvan M J Ⅲ, Kalluvila T A, Klingler R H, et al. Mercury-induced epigenetic transgenerational inheritance of abnormal neurobehavior is correlated with sperm epimutations in zebrafish[J]. PLoS One, 2017, 12(5):e0176155