内分泌干扰物对鱼类跨世代毒性效应及机制的研究进展
Transgenerational Toxicity Induced by Endocrine Disrupting Chemicals on Fish and Underlying Mechanisms
-
摘要: 目前的研究对于内分泌干扰物(endocrine disrupting chemicals,EDCs)暴露人类和野生动物所引起的毒性危害已有较为深入的科学认识。然而,近年来的研究发现,EDCs引起的亲代生理功能异常会传递给子代,即产生跨世代毒性效应,即使子代没有直接受到暴露,但其存活、生长、发育、生理、内分泌系统和行为等功能仍然也会受到严重影响。不同于已有的许多综述主要总结了EDCs对亲本产生的毒性危害,本文针对鱼类这一重要的生态毒理学研究模型,全面归纳了EDCs分别经母本、父本和双亲引起跨世代毒性效应的最新研究进展,并从EDCs的跨世代传递、内分泌激素和其他生理因子的跨世代传递以及表观遗传修饰的跨世代继承这3个方面,综述了EDCs对鱼类产生跨世代毒性效应的作用机制,以期为全面认识EDCs的生态风险提供参考。Abstract: Toxic effects induced by exposure of endocrine disrupting chemicals (EDCs) on human beings and wild animals have received relatively deep scientific understanding. However, it was reported by recent studies that physiological dysfunction in EDC-exposed parents could be transmitted to offspring, leading to production of transgenerational toxicity. The survival, growth, development, physiology, endocrine system, and behavior of the offspring could also be seriously damaged even though they were not exposed to EDCs directly. Comparing with previous reviews that mainly focused on toxic effects induced by EDCs on parents, this study comprehensively summarized latest research progress on transgenerational toxicity occurred in fish offspring produced by only maternal, only paternal, or parental exposure to EDCs. In addition, underlying mechanisms for transgenerational toxicity were further reviewed from aspects of transgenerational transmit of EDCs, transgenerational transmit of endocrine hormones and other physiological factors, and transgenerational inheritance of epigenetic modifications. This study aims to offer references for comprehensive understanding on ecological risks caused by EDCs.
-
Key words:
- endocrine disrupting chemicals /
- fish /
- transgenerational toxicity
-
-
Bergman Å, Heindel J, Jobling S, et al. State-of-the-science of endocrine disrupting chemicals, 2012[J]. Toxicology Letters, 2012, 211:S3 Koch C A, Diamanti-Kandarakis E. Introduction to endocrine disrupting chemicals-Is it time to act?[J]. Reviews in Endocrine and Metabolic Disorders, 2015, 16(4):269-270 Annamalai J, Namasivayam V. Endocrine disrupting chemicals in the atmosphere:Their effects on humans and wildlife[J]. Environment International, 2015, 76:78-97 Sun Y, Huang H, Sun Y, et al. Occurrence of estrogenic endocrine disrupting chemicals concern in sewage plant effluent[J]. Frontiers of Environmental Science & Engineering, 2014, 8(1):18-26 Futran Fuhrman V, Tal A, Arnon S. Why endocrine disrupting chemicals (EDCs) challenge traditional risk assessment and how to respond[J]. Journal of Hazardous Materials, 2015, 286:589-611 Wu S M, Su C K, Shu L H. Effects of calcium and estrogen on the development of the ceratohyal cartilage in zebrafish (Danio rerio) larvae upon embryo and maternal cadmium exposure[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2018, 213:47-54 Wang Y C, Shen C, Wang C G, et al. Maternal and embryonic exposure to the water soluble fraction of crude oil or lead induces behavioral abnormalities in zebrafish (Danio rerio), and the mechanisms involved[J]. Chemosphere, 2018, 191:7-16 Westerlund L, Billsson K, Andersson P. Early life-stage mortality in zebrafish (Danio rerio) following maternal exposure to polychlorinated biphenyls and estrogen[J]. Environmental Toxicology and Chemistry, 2000, 19(6):1582-1588 Wei P H, Zhao F, Zhang X N, et al. Transgenerational thyroid endocrine disruption induced by bisphenol S affects the early development of zebrafish offspring[J]. Environmental Pollution, 2018, 243:800-808 Schwindt A R. Parental effects of endocrine disrupting compounds in aquatic wildlife:Is there evidence of transgenerational inheritance?[J]. General and Comparative Endocrinology, 2015, 219:152-164 Skinner M K, Manikkam M, Guerrero-Bosagna C. Epigenetic transgenerational actions of endocrine disruptors[J]. Reproductive Toxicology, 2011, 31(3):337-343 Ke X, Gui S F, Huang H, et al. Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China[J]. Chemosphere, 2017, 175:473-481 Hassani G, Babaei A A, Takdastan A, et al. Occurrence and fate of 17β-estradiol in water resources and wastewater in Ahvaz, Iran[J]. Global Nest Journal, 2016, 18(4):855-866 陈茹. 珠江河口水体和沉积物中壬基酚和辛基酚的分布特征及风险评价[D]. 广州:暨南大学, 2014:28 Chen R. Distribution characteristics and risk assessment of nonylphenol and octylphenol in water and sediments from riverine runoff of the Pearl River Delta[D]. Guangzhou:Jinan University, 2014:28(in Chinese) Rasmussen T H, Andreassen T K, Pedersen S N, et al. Effects of waterborne exposure of octylphenol and oestrogen on pregnant viviparous eelpout (Zoarces viviparus) and her embryos in ovario[J]. The Journal of Experimental Biology, 2002, 205(Pt 24):3857-3876 Kang J H, Asai D, Katayama Y. Bisphenol A in the aquatic environment and its endocrine-disruptive effects on aquatic organisms[J]. Critical Reviews in Toxicology, 2007, 37(7):607-625 邵阳, 杨国胜, 刘韦华, 等. 北京地区地表水中OCPs和PCBs的污染分析[J]. 中国环境科学, 2016, 36(9):2606-2613 Shao Y, Yang G S, Liu W H, et al. The study of organochlorine pesticides and polychlorinated biphenyls in surface water around Beijing[J]. China Environmental Science, 2016, 36(9):2606-2613(in Chinese)
罗冬莲. 福建漳江口水环境中滴滴涕(DDTs)的分布与溯源[J]. 应用生态学报, 2014, 25(12):3664-3672 Luo D L. Distribution characteristics and source apportionment of dichloro-diphenyl-tricgloroethanes in Zhangjiang River Estuary of Fujian, China[J]. Chinese Journal of Applied Ecology, 2014, 25(12):3664-3672(in Chinese)
Metcalfe T L, Metcalfe C D, Kiparissis Y, et al. Gonadal development and endocrine responses in Japanese medaka (Oryzias latipes) exposed to o,p'-DDT in water or through maternal transfer[J]. Environmental Toxicology and Chemistry, 2000, 19(7):1893 Fan X T, Wu L, Hou T T, et al. Maternal bisphenol A exposure impaired endochondral ossification in craniofacial cartilage of rare minnow (Gobiocypris rarus) offspring[J]. Ecotoxicology and Environmental Safety, 2018, 163:514-520 Brustein E, Saint-Amant L, Buss R R, et al. Steps during the development of the zebrafish locomotor network[J]. Journal of Physiology-Paris, 2003, 97(1):77-86 Chen L G, Wang X F, Zhang X H, et al. Transgenerational endocrine disruption and neurotoxicity in zebrafish larvae after parental exposure to binary mixtures of decabromodiphenyl ether (BDE-209) and lead[J]. Environmental Pollution, 2017, 230:96-106 Schultz I R, Skillman A, Nicolas J M, et al. Short-term exposure to 17 alpha-ethynylestradiol decreases the fertility of sexually maturing male rainbow trout (Oncorhynchus mykiss)[J]. Environmental Toxicology and Chemistry, 2003, 22(6):1272-1280 Brown K H, Schultz I R, Nagler J J. Reduced embryonic survival in rainbow trout resulting from paternal exposure to the environmental estrogen 17alpha-ethynylestradiol during late sexual maturation[J]. Reproduction, 2007, 134(5):659-666 Brown K H, Schultz I R, Cloud J G, et al. Aneuploid sperm formation in rainbow trout exposed to the environmental estrogen 17{alpha}-ethynylestradiol[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(50):19786-19791 Nash J P, Kime D E, Van der Ven L T M, et al. Long-term exposure to environmental concentrations of the pharmaceutical ethynylestradiol causes reproductive failure in fish[J]. Environmental Health Perspectives, 2004, 112(17):1725-1733 Valcarce D G, Vuelta E, Robles V, et al. Paternal exposure to environmental 17-alpha-ethinylestradiol concentrations modifies testicular transcription, affecting the sperm transcript content and the offspring performance in zebrafish[J]. Aquatic Toxicology, 2017, 193:18-29 Lombó M, Fernández-Díez C, González-Rojo S, et al. Transgenerational inheritance of heart disorders caused by paternal bisphenol A exposure[J]. Environmental Pollution, 2015, 206:667-678 Dong X, Zhang Z, Meng S L, et al. Parental exposure to bisphenol A and its analogs influences zebrafish offspring immunity[J]. Science of the Total Environment, 2018, 610-611:291-297 Chen L G, Hu C Y, Guo Y Y, et al. TiO2 nanoparticles and BPA are combined to impair the development of offspring zebrafish after parental coexposure[J]. Chemosphere, 2019, 217:732-741 Soares J, Coimbra A M, Reis-Henriques M A, et al. Disruption of zebrafish (Danio rerio) embryonic development after full life-cycle parental exposure to low levels of ethinylestradiol[J]. Aquatic Toxicology, 2009, 95(4):330-338 Schwindt A R, Winkelman D L, Keteles K, et al. An environmental oestrogen disrupts fish population dynamics through direct and transgenerational effects on survival and fecundity[J]. Journal of Applied Ecology, 2014, 51(3):582-591 Zillioux E J, Johnson I C, Kiparissis Y, et al. The sheepshead minnow as an in vivo model for endocrine disruption in marine teleosts:A partial life-cycle test with 17alpha-ethynylestradiol[J]. Environmental Toxicology and Chemistry, 2001, 20(9):1968-1978 Hani Y M I, Turies C, Palluel O, et al. Effects of chronic exposure to cadmium and temperature, alone or combined, on the threespine stickleback (Gasterosteus aculeatus):Interest of digestive enzymes as biomarkers[J]. Aquatic Toxicology, 2018, 199:252-262 Kang I, Yokota H, Oshima Y, et al. Effects of 4-nonylphenol on reproduction of Japanese medaka, Oryzias latipes[J]. Environmental Toxicology and Chemistry:An International Journal, 2003, 22(10):2438-2445 Yang F X, Xu Y, Hui Y. Reproductive effects of prenatal exposure to nonylphenol on zebrafish (Danio rerio)[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2006, 142(1-2):77-84 Hill R L Jr, Janz D M. Developmental estrogenic exposure in zebrafish (Danio rerio):Ⅰ. Effects on sex ratio and breeding success[J]. Aquatic Toxicology, 2003, 63(4):417-429 Holdway D A, Hefferman J, Smith A. Multigeneration assessment of nonylphenol and endosulfan using a model Australian freshwater fish, Melanotaenia fluviatilis[J]. Environmental Toxicology, 2008, 23(2):253-262 Wang Y, Wang L, Chang W G, et al. Neurotoxic effects of perfluoroalkyl acids:Neurobehavioral deficit and its molecular mechanism[J]. Toxicology Letters, 2019, 305:65-72 Jin Y H, Liu W, Sato I, et al. PFOS and PFOA in environmental and tap water in China[J]. Chemosphere, 2009, 77(5):605-611 Wu J P, Luo X J, Zhang Y, et al. Bioaccumulation of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in wild aquatic species from an electronic waste (e-waste) recycling site in South China[J]. Environment International, 2008, 34(8):1109-1113 Yu L Q, Lam J C W, Guo Y Y, et al. Parental transfer of polybrominated diphenyl ethers (PBDEs) and thyroid endocrine disruption in zebrafish[J]. Environmental Science & Technology, 2011, 45(24):10652-10659 Zhao X S, Ren X, Ren B X, et al. Life-cycle exposure to BDE-47 results in thyroid endocrine disruption to adults and offsprings of zebrafish (Danio rerio)[J]. Environmental Toxicology and Pharmacology, 2016, 48:157-167 Han Z H, Li Y F, Zhang S H, et al. Prenatal transfer of decabromodiphenyl ether (BDE-209) results in disruption of the thyroid system and developmental toxicity in zebrafish offspring[J]. Aquatic Toxicology, 2017, 190:46-52 Guo Y Y, Chen L G, Wu J, et al. Parental co-exposure to bisphenol A and nano-TiO2 causes thyroid endocrine disruption and developmental neurotoxicity in zebrafish offspring[J]. Science of the Total Environment, 2019, 650:557-565 Inagaki T, Smith N L, Sherva K M, et al. Cross-generational effects of parental low dose BPA exposure on the Gonadotropin-Releasing Hormone3 system and larval behavior in medaka (Oryzias latipes)[J]. Neurotoxicology, 2016, 57:163-173 Chen L G, Yu K, Huang C J, et al. Prenatal transfer of polybrominated diphenyl ethers (PBDEs) results in developmental neurotoxicity in zebrafish larvae[J]. Environmental Science & Technology, 2012, 46(17):9727-9734 He J H, Yang D R, Wang C Y, et al. Chronic zebrafish low dose decabrominated diphenyl ether (BDE-209) exposure affected parental gonad development and locomotion in F1 offspring[J]. Ecotoxicology, 2011, 20(8):1813-1822 Chen J F, Das S R, Du J L, et al. Chronic PFOS exposures induce life stage-specific behavioral deficits in adult zebrafish and produce malformation and behavioral deficits in F1 offspring[J]. Environmental Toxicology and Chemistry, 2013, 32(1):201-206 Risch M R, Gay D A, Fowler K K, et al. Spatial patterns and temporal trends in mercury concentrations, precipitation depths, and mercury wet deposition in the North American Great Lakes region, 2002-2008[J]. Environmental Pollution, 2012, 161:261-271 何天容, 吴玉勇, 冯新斌. 富营养化对贵州红枫湖水库汞形态和分布特征的影响[J]. 湖泊科学, 2010, 22(2):208-214 He T R, Wu Y Y, Feng X B. The impact of eutrophication on distribution and speciation of mercury in Hongfeng Reservoir, Guizhou Province[J]. Journal of Lake Sciences, 2010, 22(2):208-214(in Chinese)
Mora-Zamorano F X, Klingler R, Murphy C A, et al. Parental whole life cycle exposure to dietary methylmercury in zebrafish (Danio rerio) affects the behavior of offspring[J]. Environmental Science & Technology, 2016, 50(9):4808-4816 Alvarez M D C, Murphy C A, Rose K A, et al. Maternal body burdens of methylmercury impair survival skills of offspring in Atlantic croaker (Micropogonias undulatus)[J]. Aquatic Toxicology, 2006, 80(4):329-337 Volkova K, Reyhanian Caspillo N, Porseryd T, et al. Developmental exposure of zebrafish (Danio rerio) to 17α-ethinylestradiol affects non-reproductive behavior and fertility as adults, and increases anxiety in unexposed progeny[J]. Hormones and Behavior, 2015, 73:30-38 Volkova K, Reyhanian Caspillo N, Porseryd T, et al. Transgenerational effects of 17α-ethinyl estradiol on anxiety behavior in the guppy, Poecilia reticulata[J]. General and Comparative Endocrinology, 2015, 223:66-72 Seki M, Yokota H, Maeda M, et al. Fish full life-cycle testing for 17β-estradiol on medaka (Oryzias latipes)[J]. Environmental Toxicology and Chemistry, 2005, 24(5):1259-1266 Raimondo S, Hemmer B L, Goodman L R, et al. Multigenerational exposure of the estuarine sheepshead minnow (Cyprinodon variegatus) to 17β-estradiol. Ⅱ. Population-level effects through two life cycles[J]. Environmental Toxicology and Chemistry, 2009, 28(11):2409-2415 Schäfers C, Teigeler M, Wenzel A, et al. Concentration- and time-dependent effects of the synthetic estrogen, 17alpha-ethinylestradiol, on reproductive capabilities of the zebrafish, Danio rerio[J]. Journal of Toxicology and Environmental Health Part A, 2007, 70(9):768-779 Yokota H, Seki M, Maeda M, et al. Life-cycle toxicity of 4-nonylphenol to medaka (Oryzias latipes)[J]. Environmental Toxicology and Chemistry, 2001, 20(11):2552 Matta M B, Linse J, Cairncross C, et al. Reproductive and transgenerational effects of methylmercury or aroclor 1268 on Fundulus heteroclitus[J]. Environmental Toxicology and Chemistry, 2001, 20(2):327-335 Chen J F, Xiao Y Y, Gai Z X, et al. Reproductive toxicity of low level bisphenol A exposures in a two-generation zebrafish assay:Evidence of male-specific effects[J]. Aquatic Toxicology, 2015, 169:204-214 Wang M Y, Chen J F, Lin K F, et al. Chronic zebrafish PFOS exposure alters sex ratio and maternal related effects in F1 offspring[J]. Environmental Toxicology and Chemistry, 2011, 30(9):2073-2080 Shi G H, Wang J X, Guo H, et al. Parental exposure to 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) induced transgenerational thyroid hormone disruption in zebrafish[J]. Science of the Total Environment, 2019, 665:855-863 Xu C, Niu L L, Liu J S, et al. Maternal exposure to fipronil results in sulfone metabolite enrichment and transgenerational toxicity in zebrafish offspring:Indication for an overlooked risk in maternal transfer?[J]. Environmental Pollution, 2019, 246:876-884 Cheng H C, Yan W, Wu Q, et al. Parental exposure to microcystin-LR induced thyroid endocrine disruption in zebrafish offspring, a transgenerational toxicity[J]. Environmental Pollution, 2017, 230:981-988 Zhang Y K, Su G Y, Li M, et al. Chemical and biological transfer:Which one is responsible for the maternal transfer toxicity of tris(1,3-dichloro-2-propyl) phosphate in zebrafish?[J]. Environmental Pollution, 2018, 243:1376-1382 Power D M, Llewellyn L, Faustino M, et al. Thyroid hormones in growth and development of fish[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2001, 130(4):447-459 Miccoli A, Dalla Valle L, Carnevali O. The maternal control in the embryonic development of zebrafish[J]. General and Comparative Endocrinology, 2017, 245:55-68 Sopinka N M, Capelle P M, Semeniuk C A D, et al. Glucocorticoids in fish eggs:Variation, interactions with the environment, and the potential to shape offspring fitness[J]. Physiological and Biochemical Zoology:PBZ, 2017, 90(1):15-33 Bird A. DNA methylation patterns and epigenetic memory[J]. Genes & Development, 2002, 16(1):6-21 Youngson N A, Whitelaw E. Transgenerational epigenetic effects[J]. Annual Review of Genomics and Human Genetics, 2008, 9:233-257 Head J A. Patterns of DNA methylation in animals:An ecotoxicological perspective[J]. Integrative and Comparative Biology, 2014, 54(1):77-86 Cavalieri V, Spinelli G. Environmental epigenetics in zebrafish[J]. Epigenetics & Chromatin, 2017, 10(1):46 Kamstra J H, Sales L B, Aleström P, et al. Differential DNA methylation at conserved non-genic elements and evidence for transgenerational inheritance following developmental exposure to mono(2-ethylhexyl) phthalate and 5-azacytidine in zebrafish[J]. Epigenetics & Chromatin, 2017, 10:20 Carvan M J Ⅲ, Kalluvila T A, Klingler R H, et al. Mercury-induced epigenetic transgenerational inheritance of abnormal neurobehavior is correlated with sperm epimutations in zebrafish[J]. PLoS One, 2017, 12(5):e0176155 -

计量
- 文章访问数: 2623
- HTML全文浏览数: 2623
- PDF下载数: 265
- 施引文献: 0