Brayner R, Ferrari-Iliou R, Brivois N, et al. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium [J]. Nano Letters, 2006, 6(4): 866-870
Gottschalk F, Sonderer T, Scholz R W, et al. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions [J]. Environmental Science & Technology, 2009, 43(24): 9216-9222
Mukherjee A, Peralta-Videa J R, Bandyopadhyay S, et al. Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil [J]. Metallomics: Integrated Biometal Science, 2014, 6(1): 132-138
Yang Z Z, Chen J, Dou R Z, et al. Assessment of the phytotoxicity of metal oxide nanoparticles on two crop plants, maize (Zea mays L.) and rice (Oryza sativa L.) [J]. International Journal of Environmental Research and Public Health, 2015, 12(12): 15100-15109
Yoon S J, Kwak J I, Lee W M, et al. Zinc oxide nanoparticles delay soybean development: A standard soil microcosm study [J]. Ecotoxicology and Environmental Safety, 2014, 100: 131-137
Vannini C, Domingo G, Onelli E, et al. Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings [J]. Journal of Plant Physiology, 2014, 171(13): 1142-1148
Servin A D, Morales M I, Castillo-Michel H, et al. Synchrotron verification of TiO2 accumulation in cucumber fruit: A possible pathway of TiO2 nanoparticle transfer from soil into the food chain [J]. Environmental Science & Technology, 2013, 47(20): 11592-11598
Shaw A K, Ghosh S, Kalaji H M, et al. Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.) [J]. Environmental and Experimental Botany, 2014, 102: 37-47
Ge Y, Priester J H, van De Werfhorst L C, et al. Potential mechanisms and environmental controls of TiO2 nanoparticle effects on soil bacterial communities [J]. Environmental Science & Technology, 2013, 47(24): 14411-14417
Priester J H, Ge Y, Chang V, et al. Assessing interactions of hydrophilic nanoscale TiO2 with soil water [J]. Journal of Nanoparticle Research, 2013, 15(9): 1899
Ge Y, Schimel J P, Holden P A. Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles [J]. Applied and Environmental Microbiology, 2012, 78(18): 6749-6758
Frenk S, Ben-Moshe T, Dror I, et al. Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types [J]. PLoS One, 2013, 8(12): e84441
徐辰. 氧化铜纳米颗粒对稻田土壤及微生物生态的作用机制[D]. 杭州: 浙江大学, 2016: 104-111 Xu C. Effect of copper oxide nanoparticles on properties and microbial ecosystem of paddy soil [D]. Hangzhou: Zhejiang University, 2016: 104 -111 (in Chinese)
伍玲丽, 杨玉蓉, 张丽, 等. 纳米银对土壤固氮微生物群落结构及固氮活性的影响[J]. 农业环境科学学报, 2019, 38(12): 2757-2763 Wu L L, Yang Y R, Zhang L, et al. Effects of silver nanoparticle (AgNP) on soil nitrogen-fixing microbial community structure and nitrogenase activity [J]. Journal of Agro-Environment Science, 2019, 38(12): 2757-2763 (in Chinese)
McGee C F, Storey S, Clipson N, et al. Soil microbial community responses to contamination with silver, aluminium oxide and silicon dioxide nanoparticles [J]. Ecotoxicology, 2017, 26(3): 449-458
Zhang L L, Jiang Y H, Ding Y L, et al. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids) [J]. Journal of Nanoparticle Research, 2007, 9(3): 479-489
徐江兵, 王艳玲, 罗小三, 等. 纳米氧化锌对堆肥过程中细菌群落演替的影响[J]. 应用与环境生物学报, 2017, 23(6): 1166-1171 Xu J B, Wang Y L, Luo X S, et al. Influence of zinc oxide nanoparticles on the succession of bacterial communities during the composting process [J]. Chinese Journal of Applied and Environmental Biology, 2017, 23(6): 1166-1171 (in Chinese)
周庆. 金属氧化物纳米材料对土壤微生物群落及甲霜灵转化的影响[D]. 武汉: 武汉大学, 2020: 69-70 Zhou Q. Effects of metal oxide nanoparticles on soil microbial community and transformation of racemic-metalaxyl [D]. Wuhan: Wuhan University, 2020: 69 -70 (in Chinese)
李可心, 吴英海, 宛立, 等. 纳米二氧化钛驱动的人工湿地基质微生物群落差异[J]. 生态学杂志, 2020, 39(12): 4068-4077 Li K X, Wu Y H, Wan L, et al. Variation of microbial community in constructed wetland substrate motivated by nano titanium dioxide [J]. Chinese Journal of Ecology, 2020, 39(12): 4068-4077 (in Chinese)
Hao Y, Xu B L, Ma C X, et al. Synthesis of novel mesoporous carbon nanoparticles and their phytotoxicity to rice (Oryza sativa L.) [J]. Journal of Saudi Chemical Society, 2019, 23(1): 75-82
尹勇, 刘灵. 三种纳米材料对水稻幼苗生长及根际土壤肥力的影响[J]. 农业资源与环境学报, 2020, 37(5): 736-743 Yin Y, Liu L. Effects of three nanomaterials on the growth and rhizospheric soil fertility of rice seedlings [J]. Journal of Agricultural Resources and Environment, 2020, 37(5): 736-743 (in Chinese)
李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000: 164-175
蒋治岩, 邹青勤, 杨柳, 等. 典型黑土区不同菌根类型树种根系分泌速率及根际效应差异[J]. 生态学杂志, 2021, 40(9): 2709-2718 Jiang Z Y, Zou Q Q, Yang L, et al. Root exudation rate and rhizosphere effect of different mycorrhizal associations of tree species in typical black soil area [J]. Chinese Journal of Ecology, 2021, 40(9): 2709-2718 (in Chinese)
赵婷, 李琴, 潘学军, 等. 陆生植物对淹水胁迫的适应机制[J]. 植物生理学报, 2021, 57(11): 2091-2103 Zhao T, Li Q, Pan X J, et al. Adaptive mechanism of terrestrial plants to waterlogging stress [J]. Plant Physiology Journal, 2021, 57(11): 2091-2103 (in Chinese)
Song G L, Hou W H, Gao Y, et al. Effects of CuO nanoparticles on Lemna minor [J]. Botanical Studies, 2016, 57(1): 3
Iannone M F, Groppa M D, de Sousa M E, et al. Impact of magnetite iron oxide nanoparticles on wheat (Triticum aestivum L.) development: Evaluation of oxidative damage [J]. Environmental and Experimental Botany, 2016, 131: 77-88
Kim S, Lee S, Lee I. Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus [J]. Water, Air, & Soil Pollution, 2012, 223(5): 2799-2806
Li J, Naeem M S, Wang X P, et al. Nano-TiO2 is not phytotoxic As revealed by the oilseed rape growth and photosynthetic apparatus ultra-structural response [J]. PLoS One, 2015, 10(12): e0143885
Dvořák P, Krasylenko Y, Zeiner A, et al. Signaling toward reactive oxygen species-scavenging enzymes in plants [J]. Frontiers in Plant Science, 2020, 11: 618835
Sytar O, Kumar A, Latowski D, et al. Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants [J]. Acta Physiologiae Plantarum, 2013, 35(4): 985-999
Sheykhbaglou R, Sedghi M, Shishevan M T, et al. Effects of nano-iron oxide particles on agronomic traits of soybean [J]. Notulae Scientia Biologicae, 2010, 2(2): 112-113
桂新. 几种纳米氧化物的生物效应与机制[D]. 北京: 中国农业大学, 2016: 52-54 Gui X. Bio-effects and mechanisms of several nano-oxide materials [D]. Beijing: China Agricultural University, 2016: 52 -54 (in Chinese)
Jośko I, Oleszczuk P, Futa B. The effect of inorganic nanoparticles (ZnO, Cr2O3, CuO and Ni) and their bulk counterparts on enzyme activities in different soils [J]. Geoderma, 2014, 232-234: 528-537
柴汉魁. 四种金属氧化物纳米颗粒对农业土壤微生物的毒性研究[D]. 北京: 北京科技大学, 2017: 85-87 Chai H K. The toxic effect study of four metal oxide nanoparticles on agricultural soil microorganism [D]. Beijing: University of Science and Technology Beijing, 2017: 85 -87 (in Chinese)
Du W C, Sun Y Y, Ji R, et al. TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil [J]. Journal of Environmental Monitoring, 2011, 13(4): 822-828
王壮, 金世光, 张帆, 等. 氧化锌和二氧化钛纳米颗粒对淡水绿藻的单一及联合毒性研究[J]. 农业环境科学学报, 2021, 40(10): 2095-2105 Wang Z, Jin S G, Zhang F, et al. Single and joint toxicity of zinc oxide and titanium dioxide nanoparticles for freshwater algae [J]. Journal of Agro-Environment Science, 2021, 40(10): 2095-2105 (in Chinese)
刘倩, 杜青平, 刘涛, 等. 纳米氧化锌致大型溞的毒性效应特征[J]. 环境科学学报, 2019, 39(4): 1332-1339 Liu Q, Du Q P, Liu T, et al. Study on the toxicity effects of nanometer zinc oxide on Daphnia magna [J]. Acta Scientiae Circumstantiae, 2019, 39(4): 1332-1339 (in Chinese)
Franklin N M, Rogers N J, Apte S C, et al. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility [J]. Environmental Science & Technology, 2007, 41(24): 8484-8490
尹勇. 三种金属氧化物纳米材料对水稻幼苗生长及根际微生物群落结构的影响[D]. 桂林: 广西师范大学, 2019: 43-44 Yin Y. Effects of three metal oxide nanomaterials on growth and rhizospheric microbial community structure of rice seedling [D]. Guilin: Guangxi Normal University, 2019: 43 -44 (in Chinese)
Dinesh R, Anandaraj M, Srinivasan V, et al. Engineered nanoparticles in the soil and their potential implications to microbial activity [J]. Geoderma, 2012, 173-174: 19-27
You T T, Liu D D, Chen J, et al. Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types [J]. Journal of Soils and Sediments, 2018, 18(1): 211-221
Chai H K, Yao J, Sun J J, et al. The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural soil [J]. Bulletin of Environmental Contamination and Toxicology, 2015, 94(4): 490-495
Zhang Z Z, Cheng Y F, Xu L Z, et al. Evaluating the effects of metal oxide nanoparticles (TiO2, Al2O3, SiO2 and CeO2) on anammox process: Performance, microflora and sludge properties [J]. Bioresource Technology, 2018, 266: 11-18
Xu C, Peng C, Sun L J, et al. Distinctive effects of TiO2 and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil [J]. Soil Biology and Biochemistry, 2015, 86: 24-33
Wu B, Wang Y, Lee Y H, et al. Comparative eco-toxicities of nano-ZnO particles under aquatic and aerosol exposure modes [J]. Environmental Science & Technology, 2010, 44(4): 1484-1489
Zhou Y, Ma J, Yang J H, et al. Soybean rhizosphere microorganisms alleviate Mo nanomaterials induced stress by improving soil microbial community structure [J]. Chemosphere, 2023, 310: 136784
Ahmad F, Ahmad I, Khan M S. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities [J]. Microbiological Research, 2008, 163(2): 173-181
Gravel V, Antoun H, Tweddell R J. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: Possible role of indole acetic acid (IAA) [J]. Soil Biology and Biochemistry, 2007, 39(8): 1968-1977
Rime T, Hartmann M, Brunner I, et al. Vertical distribution of the soil microbiota along a successional gradient in a glacier forefield [J]. Molecular Ecology, 2015, 24(5): 1091-1108
Li D, Zhou C R, Wu Y L, et al. Nanoselenium integrates soil-pepper plant homeostasis by recruiting rhizosphere-beneficial microbiomes and allocating signaling molecule levels under Cd stress [J]. Journal of Hazardous Materials, 2022, 432: 128763
薛玉琴, 徐飞, 刘坤和, 等. 面源污染诱导嘉陵江沉积物中细菌群落结构与功能异变[J]. 环境科学, 2022, 43(5): 2595-2605 Xue Y Q, Xu F, Liu K H, et al. Non-point source pollution (NPSP) induces structural and functional variation in bacterial communities in sediments of Jialing River [J]. Environmental Science, 2022, 43(5): 2595-2605 (in Chinese)
闫冰, 付嘉琦, 夏嵩, 等. 厌氧氨氧化启动过程细菌群落多样性及PICRUSt2功能预测分析[J]. 环境科学, 2021, 42(8): 3875-3885 Yan B, Fu J Q, Xia S, et al. Diversity and PICRUSt2-based predicted functional analysis of bacterial communities during the start-up of ANAMMOX [J]. Environmental Science, 2021, 42(8): 3875-3885 (in Chinese)
Guo X C, Liu S, Wang Z, et al. Metagenomic profiles and antibiotic resistance genes in gut microbiota of mice exposed to arsenic and iron [J]. Chemosphere, 2014, 112: 1-8
Kubacka A, Diez M S, Rojo D, et al. Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium [J]. Scientific Reports, 2014, 4: 4134
Echavarri-Bravo V, Paterson L, Aspray T J, et al. Shifts in the metabolic function of a benthic estuarine microbial community following a single pulse exposure to silver nanoparticles [J]. Environmental Pollution, 2015, 201: 91-99