3种纳米材料对水稻幼苗生理及根际细菌群落结构的影响
Effects of Three Nanomaterials on Physiology and Rhizosphere Bacterial Community Structure of Rice Seedlings
-
摘要: 随着纳米技术的快速发展,评估人工纳米材料(ENMs)对植物-微生物系统的潜在危害至关重要。本研究通过盆栽试验,分析不同浓度(0、0.50、1.00和2.00 mg·g-1)的纳米材料即纳米二氧化硅(nSiO2)、纳米二氧化钛(nTiO2)和纳米氧化锌(nZnO)对水稻幼苗生理和根际细菌群落结构的影响。研究结果显示,3种纳米材料处理后,水稻幼苗的超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性均显著增加(P<0.05,下同),可溶性蛋白(SP)含量仅在2.00 mg·g-1 nTiO2和0.50 mg·g-1 nZnO处理时显著降低;2.00 mg·g-1 nSiO2处理及1.00 mg·g-1和2.00 mg·g-1 nZnO处理均可显著降低水稻幼苗的株高(PH)、鲜质量(FW)和干质量(DW),nTiO2处理则对其没有显著性影响。高通量测序结果表明,与不加纳米材料的对照(CK)处理比,3种纳米材料处理的根际土壤优势菌门为变形菌门(Proteobacteria)、酸杆菌门(Acidobacteria)、绿弯菌门(Chloroflexi)和拟杆菌门(Bacteroidetes),根际促生及反硝化细菌如芽孢杆菌属(Bacillus)、黄色土源菌(Flavisolibacter)、Kaistobacter、红游动菌属(Rhodoplanes)和Candidatus_Solibacter菌属的丰度均有显著提升。Pearson相关分析表明,Catellatospora等属的相对丰度与水稻的抗氧化酶活性和生物量呈显著正相关,而Candidatus_Koribacter等属的相对丰度与其呈显著负相关。同时,nSiO2和nZnO处理浓度分别为1.00 mg·g-1和2.00 mg·g-1的水稻根际土壤细菌多样性均降低,群落结构变化明显,而nTiO2处理对其影响不显著;nSiO2和nTiO2处理均诱导水稻根际细菌中编码氨基酸代谢等基因丰度显著升高,nZnO处理则降低与细胞运动等相关功能基因丰度。综上所述,3种尺度相同的纳米材料可直接对水稻幼苗产生生理毒性,但因nZnO和nTiO2的水力直径分别为最小和最大而相应表现出最强和最弱的毒性效应。此外,3种纳米材料尤其是nSiO2和nZnO还可通过改变根际土壤细菌基因功能,降低水稻根际土壤细菌多样性并改变群落组成及结构,间接造成水稻幼苗氧化应激和渗透胁迫,进而不同程度地影响幼苗生长和发育,其中nZnO的抑制效果最显著。3种纳米材料对水稻幼苗生理和根际细菌群落表现出的毒性大小顺序:nZnO > nSiO2 > nTiO2。本研究结果为纳米材料对水稻及根际土壤微生物的潜在危害及农田生态系统的环境保护与资源利用提供了科学依据。Abstract: With the rapid development of nanotechnology, it is critical to assess the potential harm of artificial nanomaterials (ENMs) on plant-microbial systems. In this study, the effects of different concentrations (0, 0.50, 1.00 and 2.00 mg·g-1) of nanomaterials such as nanometer silica, nanometer titanium peroxide and nanometer zinc oxide (nSiO2, nTiO2 and nZnO) on the physiological characteristics and rhizosphere bacterial community structure of rice seedlings were analyzed by pot experiments. The results showed that the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in rice seedlings increased significantly after the treatment of three nanomaterials (P<0.05, the same below), and the soluble protein (SP) content significantly decreased only when treated with 2.00 mg·g-1 nTiO2 and 0.50 mg·g-1 nZnO. The treatment of 2.00 mg·g-1 nSiO2 and 1.00 mg·g-1 and 2.00 mg·g-1 nZnO significantly reduced plant height (PH), fresh weight (FW) and dry weight (DW) of rice seedlings, while nTiO2 treatment had no significant effects on PH, FW and DW of rice seedlings. The results of high-throughput sequencing showed that compared with the control (CK), the dominant phyla were Proteobacteria, Acidobacteria, Chloroflexi and Bacteroidetes, and the abundances of plant growth promoting bacteria and denitrifying bacteria such as Bacillus, Flavisolibacter, Kaistobacter, Rhodoplanes and Candidatus_Solibacter significantly increased in the rhizosphere soil treated with three kinds of nanomaterials. Pearson correlation analysis showed that the relative abundances of Catellatospora and other genera were significantly positively correlated with the antioxidant enzyme activity and the biomass of rice seedlings, while the relative abundances of Candidatus_Koribacter and other genera were significantly negatively correlated with it. At the same time, the bacterial diversity decreased and the community structure changed significantly in rice rhizosphere soil treated with 1.00 mg·g-1 nSiO2 or 2.00 mg·g-1 nZnO, but nTiO2 treatment had no significant effect on it. The treatment with nSiO2 or nTiO2 significantly increased the abundance of genes related to amino acid metabolism in rice rhizosphere bacteria, while nZnO treatment decreased the abundance of functional genes related to cell movement. In conclusion, three nanomaterials with the same size can directly produce physiological toxicity to rice seedlings. However, nZnO and nTiO2 showed the strongest and the weakest toxic effects due to the smallest and the largest hydraulic diameters respectively. Three kinds of nanomaterials, especially nSiO2 and nZnO, indirectly caused oxidative stress and osmotic stress, and affected the growth and development of rice seedlings by changing gene function, reducing the diversity and changing the community structure in bacteria from rice rhizosphere soil. Among them, nZnO had the strongest inhibitory effect. The order of the toxicity of three nanomaterials to physiological functions of rice seedlings and bacterial community in the rhizosphere was as follow: nZnO > nSiO2 > nTiO2. The results of this study provided a scientific basis to reveal the potential damage of nanomaterials to rice and microorganisms in rhizosphere soil, and conduct the environmental protection and resource utilization of farmland ecosystem.
-
-
Brayner R, Ferrari-Iliou R, Brivois N, et al. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium [J]. Nano Letters, 2006, 6(4): 866-870 Gottschalk F, Sonderer T, Scholz R W, et al. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions [J]. Environmental Science & Technology, 2009, 43(24): 9216-9222 Mukherjee A, Peralta-Videa J R, Bandyopadhyay S, et al. Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil [J]. Metallomics: Integrated Biometal Science, 2014, 6(1): 132-138 Yang Z Z, Chen J, Dou R Z, et al. Assessment of the phytotoxicity of metal oxide nanoparticles on two crop plants, maize (Zea mays L.) and rice (Oryza sativa L.) [J]. International Journal of Environmental Research and Public Health, 2015, 12(12): 15100-15109 Yoon S J, Kwak J I, Lee W M, et al. Zinc oxide nanoparticles delay soybean development: A standard soil microcosm study [J]. Ecotoxicology and Environmental Safety, 2014, 100: 131-137 Vannini C, Domingo G, Onelli E, et al. Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings [J]. Journal of Plant Physiology, 2014, 171(13): 1142-1148 Servin A D, Morales M I, Castillo-Michel H, et al. Synchrotron verification of TiO2 accumulation in cucumber fruit: A possible pathway of TiO2 nanoparticle transfer from soil into the food chain [J]. Environmental Science & Technology, 2013, 47(20): 11592-11598 Shaw A K, Ghosh S, Kalaji H M, et al. Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.) [J]. Environmental and Experimental Botany, 2014, 102: 37-47 Ge Y, Priester J H, van De Werfhorst L C, et al. Potential mechanisms and environmental controls of TiO2 nanoparticle effects on soil bacterial communities [J]. Environmental Science & Technology, 2013, 47(24): 14411-14417 Priester J H, Ge Y, Chang V, et al. Assessing interactions of hydrophilic nanoscale TiO2 with soil water [J]. Journal of Nanoparticle Research, 2013, 15(9): 1899 Ge Y, Schimel J P, Holden P A. Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles [J]. Applied and Environmental Microbiology, 2012, 78(18): 6749-6758 Frenk S, Ben-Moshe T, Dror I, et al. Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types [J]. PLoS One, 2013, 8(12): e84441 徐辰. 氧化铜纳米颗粒对稻田土壤及微生物生态的作用机制[D]. 杭州: 浙江大学, 2016: 104-111 Xu C. Effect of copper oxide nanoparticles on properties and microbial ecosystem of paddy soil [D]. Hangzhou: Zhejiang University, 2016: 104 -111 (in Chinese)
伍玲丽, 杨玉蓉, 张丽, 等. 纳米银对土壤固氮微生物群落结构及固氮活性的影响[J]. 农业环境科学学报, 2019, 38(12): 2757-2763 Wu L L, Yang Y R, Zhang L, et al. Effects of silver nanoparticle (AgNP) on soil nitrogen-fixing microbial community structure and nitrogenase activity [J]. Journal of Agro-Environment Science, 2019, 38(12): 2757-2763 (in Chinese)
McGee C F, Storey S, Clipson N, et al. Soil microbial community responses to contamination with silver, aluminium oxide and silicon dioxide nanoparticles [J]. Ecotoxicology, 2017, 26(3): 449-458 Zhang L L, Jiang Y H, Ding Y L, et al. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids) [J]. Journal of Nanoparticle Research, 2007, 9(3): 479-489 徐江兵, 王艳玲, 罗小三, 等. 纳米氧化锌对堆肥过程中细菌群落演替的影响[J]. 应用与环境生物学报, 2017, 23(6): 1166-1171 Xu J B, Wang Y L, Luo X S, et al. Influence of zinc oxide nanoparticles on the succession of bacterial communities during the composting process [J]. Chinese Journal of Applied and Environmental Biology, 2017, 23(6): 1166-1171 (in Chinese)
周庆. 金属氧化物纳米材料对土壤微生物群落及甲霜灵转化的影响[D]. 武汉: 武汉大学, 2020: 69-70 Zhou Q. Effects of metal oxide nanoparticles on soil microbial community and transformation of racemic-metalaxyl [D]. Wuhan: Wuhan University, 2020: 69 -70 (in Chinese)
李可心, 吴英海, 宛立, 等. 纳米二氧化钛驱动的人工湿地基质微生物群落差异[J]. 生态学杂志, 2020, 39(12): 4068-4077 Li K X, Wu Y H, Wan L, et al. Variation of microbial community in constructed wetland substrate motivated by nano titanium dioxide [J]. Chinese Journal of Ecology, 2020, 39(12): 4068-4077 (in Chinese)
Hao Y, Xu B L, Ma C X, et al. Synthesis of novel mesoporous carbon nanoparticles and their phytotoxicity to rice (Oryza sativa L.) [J]. Journal of Saudi Chemical Society, 2019, 23(1): 75-82 尹勇, 刘灵. 三种纳米材料对水稻幼苗生长及根际土壤肥力的影响[J]. 农业资源与环境学报, 2020, 37(5): 736-743 Yin Y, Liu L. Effects of three nanomaterials on the growth and rhizospheric soil fertility of rice seedlings [J]. Journal of Agricultural Resources and Environment, 2020, 37(5): 736-743 (in Chinese)
李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000: 164-175 蒋治岩, 邹青勤, 杨柳, 等. 典型黑土区不同菌根类型树种根系分泌速率及根际效应差异[J]. 生态学杂志, 2021, 40(9): 2709-2718 Jiang Z Y, Zou Q Q, Yang L, et al. Root exudation rate and rhizosphere effect of different mycorrhizal associations of tree species in typical black soil area [J]. Chinese Journal of Ecology, 2021, 40(9): 2709-2718 (in Chinese)
赵婷, 李琴, 潘学军, 等. 陆生植物对淹水胁迫的适应机制[J]. 植物生理学报, 2021, 57(11): 2091-2103 Zhao T, Li Q, Pan X J, et al. Adaptive mechanism of terrestrial plants to waterlogging stress [J]. Plant Physiology Journal, 2021, 57(11): 2091-2103 (in Chinese)
Song G L, Hou W H, Gao Y, et al. Effects of CuO nanoparticles on Lemna minor [J]. Botanical Studies, 2016, 57(1): 3 Iannone M F, Groppa M D, de Sousa M E, et al. Impact of magnetite iron oxide nanoparticles on wheat (Triticum aestivum L.) development: Evaluation of oxidative damage [J]. Environmental and Experimental Botany, 2016, 131: 77-88 Kim S, Lee S, Lee I. Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus [J]. Water, Air, & Soil Pollution, 2012, 223(5): 2799-2806 Li J, Naeem M S, Wang X P, et al. Nano-TiO2 is not phytotoxic As revealed by the oilseed rape growth and photosynthetic apparatus ultra-structural response [J]. PLoS One, 2015, 10(12): e0143885 Dvořák P, Krasylenko Y, Zeiner A, et al. Signaling toward reactive oxygen species-scavenging enzymes in plants [J]. Frontiers in Plant Science, 2020, 11: 618835 Sytar O, Kumar A, Latowski D, et al. Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants [J]. Acta Physiologiae Plantarum, 2013, 35(4): 985-999 Sheykhbaglou R, Sedghi M, Shishevan M T, et al. Effects of nano-iron oxide particles on agronomic traits of soybean [J]. Notulae Scientia Biologicae, 2010, 2(2): 112-113 桂新. 几种纳米氧化物的生物效应与机制[D]. 北京: 中国农业大学, 2016: 52-54 Gui X. Bio-effects and mechanisms of several nano-oxide materials [D]. Beijing: China Agricultural University, 2016: 52 -54 (in Chinese)
Jośko I, Oleszczuk P, Futa B. The effect of inorganic nanoparticles (ZnO, Cr2O3, CuO and Ni) and their bulk counterparts on enzyme activities in different soils [J]. Geoderma, 2014, 232-234: 528-537 柴汉魁. 四种金属氧化物纳米颗粒对农业土壤微生物的毒性研究[D]. 北京: 北京科技大学, 2017: 85-87 Chai H K. The toxic effect study of four metal oxide nanoparticles on agricultural soil microorganism [D]. Beijing: University of Science and Technology Beijing, 2017: 85 -87 (in Chinese)
Du W C, Sun Y Y, Ji R, et al. TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil [J]. Journal of Environmental Monitoring, 2011, 13(4): 822-828 王壮, 金世光, 张帆, 等. 氧化锌和二氧化钛纳米颗粒对淡水绿藻的单一及联合毒性研究[J]. 农业环境科学学报, 2021, 40(10): 2095-2105 Wang Z, Jin S G, Zhang F, et al. Single and joint toxicity of zinc oxide and titanium dioxide nanoparticles for freshwater algae [J]. Journal of Agro-Environment Science, 2021, 40(10): 2095-2105 (in Chinese)
刘倩, 杜青平, 刘涛, 等. 纳米氧化锌致大型溞的毒性效应特征[J]. 环境科学学报, 2019, 39(4): 1332-1339 Liu Q, Du Q P, Liu T, et al. Study on the toxicity effects of nanometer zinc oxide on Daphnia magna [J]. Acta Scientiae Circumstantiae, 2019, 39(4): 1332-1339 (in Chinese)
Franklin N M, Rogers N J, Apte S C, et al. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility [J]. Environmental Science & Technology, 2007, 41(24): 8484-8490 尹勇. 三种金属氧化物纳米材料对水稻幼苗生长及根际微生物群落结构的影响[D]. 桂林: 广西师范大学, 2019: 43-44 Yin Y. Effects of three metal oxide nanomaterials on growth and rhizospheric microbial community structure of rice seedling [D]. Guilin: Guangxi Normal University, 2019: 43 -44 (in Chinese)
Dinesh R, Anandaraj M, Srinivasan V, et al. Engineered nanoparticles in the soil and their potential implications to microbial activity [J]. Geoderma, 2012, 173-174: 19-27 You T T, Liu D D, Chen J, et al. Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types [J]. Journal of Soils and Sediments, 2018, 18(1): 211-221 Chai H K, Yao J, Sun J J, et al. The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural soil [J]. Bulletin of Environmental Contamination and Toxicology, 2015, 94(4): 490-495 Zhang Z Z, Cheng Y F, Xu L Z, et al. Evaluating the effects of metal oxide nanoparticles (TiO2, Al2O3, SiO2 and CeO2) on anammox process: Performance, microflora and sludge properties [J]. Bioresource Technology, 2018, 266: 11-18 Xu C, Peng C, Sun L J, et al. Distinctive effects of TiO2 and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil [J]. Soil Biology and Biochemistry, 2015, 86: 24-33 Wu B, Wang Y, Lee Y H, et al. Comparative eco-toxicities of nano-ZnO particles under aquatic and aerosol exposure modes [J]. Environmental Science & Technology, 2010, 44(4): 1484-1489 Zhou Y, Ma J, Yang J H, et al. Soybean rhizosphere microorganisms alleviate Mo nanomaterials induced stress by improving soil microbial community structure [J]. Chemosphere, 2023, 310: 136784 Ahmad F, Ahmad I, Khan M S. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities [J]. Microbiological Research, 2008, 163(2): 173-181 Gravel V, Antoun H, Tweddell R J. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: Possible role of indole acetic acid (IAA) [J]. Soil Biology and Biochemistry, 2007, 39(8): 1968-1977 Rime T, Hartmann M, Brunner I, et al. Vertical distribution of the soil microbiota along a successional gradient in a glacier forefield [J]. Molecular Ecology, 2015, 24(5): 1091-1108 Li D, Zhou C R, Wu Y L, et al. Nanoselenium integrates soil-pepper plant homeostasis by recruiting rhizosphere-beneficial microbiomes and allocating signaling molecule levels under Cd stress [J]. Journal of Hazardous Materials, 2022, 432: 128763 薛玉琴, 徐飞, 刘坤和, 等. 面源污染诱导嘉陵江沉积物中细菌群落结构与功能异变[J]. 环境科学, 2022, 43(5): 2595-2605 Xue Y Q, Xu F, Liu K H, et al. Non-point source pollution (NPSP) induces structural and functional variation in bacterial communities in sediments of Jialing River [J]. Environmental Science, 2022, 43(5): 2595-2605 (in Chinese)
闫冰, 付嘉琦, 夏嵩, 等. 厌氧氨氧化启动过程细菌群落多样性及PICRUSt2功能预测分析[J]. 环境科学, 2021, 42(8): 3875-3885 Yan B, Fu J Q, Xia S, et al. Diversity and PICRUSt2-based predicted functional analysis of bacterial communities during the start-up of ANAMMOX [J]. Environmental Science, 2021, 42(8): 3875-3885 (in Chinese)
Guo X C, Liu S, Wang Z, et al. Metagenomic profiles and antibiotic resistance genes in gut microbiota of mice exposed to arsenic and iron [J]. Chemosphere, 2014, 112: 1-8 Kubacka A, Diez M S, Rojo D, et al. Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium [J]. Scientific Reports, 2014, 4: 4134 Echavarri-Bravo V, Paterson L, Aspray T J, et al. Shifts in the metabolic function of a benthic estuarine microbial community following a single pulse exposure to silver nanoparticles [J]. Environmental Pollution, 2015, 201: 91-99 -

计量
- 文章访问数: 1358
- HTML全文浏览数: 1358
- PDF下载数: 97
- 施引文献: 0