QIAO J L, LIU Y Y, HONG F, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews, 2014, 43(2):631-675.
ASADI M, KIM K, LIU C, et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid[J]. Science, 2016, 353(6298):467-470.
GAO S, LIN Y, JIAO X C, et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel[J]. Nature, 2016, 529(7584):68-71.
LOGAN B E, CALL D, CHENG S, et al. Microbial electrolysis cells for high yield hydrogen gas production from organic matter[J]. Environmental Science & Technology, 2008, 42(23):8630-8640.
LIU X W, LI W W, YU H Q. Cathodic catalysts in bioelectrochemical systems for energy recovery from wastewater[J]. Chemical Society Reviews, 2014, 43(22):7718-7745.
CHENG S A, XING D F, CALL D F, et al. Direct biological conversion of electrical current into methane by electromethanogenesis[J]. Environmental Science & Technology, 2009, 43(10):3953-3958.
VILLANO M, AULENTA F, CIUCCI C, et al. Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture[J]. Bioresource Technology, 2010, 101:3085-3090.
FU Q, KURAMOCHI Y, FUKUSHIMA N, et al. Bioelectrochemical analyses of the development of a thermophilic biocathode catalyzing electromethanogenesis[J]. Environmental Science & Technology, 2015, 49(2):1225-1232.
BATTLE-VILANOVA P, PUIG S, GONZALEZ-OLMOS R, et al. Deciphering the electron transfer mechanisms for biogas upgrading to biomethane within a mixed culture biocathode[J]. RSC Advances, 2015, 5(64):52243-52251.
XU H, WANG K, HOLMES D E. Bioelectrochemical removal of carbon dioxide (CO2):An innovative method for biogas upgrading[J]. Bioresource Technology, 2014, 173:392-398.
SATO K, KAWAGUCHI H, KOBAYASHI H. Bio-electrochemical conversion of carbon dioxide to methane in geological storage reservoirs[J]. Energy Conversion and Management, 2013, 66(1):343-350.
LUO X, ZHANG F, LIU J, et al. Methane production in microbial reverse-electrodialysis methanogenesis cells (MRMCs) using thermolytic solutions[J]. Environmental Science & Technology, 2014, 48(15):8911-8918.
蒋永,苏敏,张尧,等. 生物电化学系统还原二氧化碳同时合成甲烷和乙酸[J]. 应用于环境生物学报, 2013,19(5):833-837. JIANG Y, SU M, ZHANG Y, et al. Simultaneous production of methane and acetate from carbon dioxide with bioelectrochemical systems[J]. Chinese Journal of Appplied Environmental Biology, 2013, 19(5):833-837(in Chinese).
ZHEN G Y, LU X Q, KOBAYASHI T, et al. Promoted electromethanosynthesis in a two-chamber microbial electrolysis cells (MECs) containing a hybrid biocathode covered with graphite felt (GF)[J]. Chemical Engineering Journal, 2016, 284:1146-1155.
DYKSTRA C M, PAVLOSTATHIS S G. Methanogenic biocathode microbial community development and the role of bacteria[J]. Environmental Science & Technology, 2017, 51(9):5306-5316.
WANG Q N, DONG H, YU H B, et al. Enhanced electrochemical reduction of carbon dioxide to formic acid using a two-layer gas diffusion electrode in a microbial electrolysis cell[J]. RSC Advances, 2015, 5(14):10346-10351.
JOURDIN L, FREGUIA S, FLEXER V, et al. Bringing high-Rate, CO2-based microbial electrosynthesis closer to practical implementation through improved electrode design and operating conditions[J]. Environmental Science & Technology, 2016, 50(4):1982-1989.
ALBO J, ALVAREZ-GUERRA M, CASTARIO P, et al. Towards the electrochemical conversion of carbon dioxide into methanol[J]. Green Chemistry, 2015, 17(4):2304-2324.
XIANG Y B, LIU G L, ZHANG R D, et al. Acetate production and electron utilization facilitated by sulfate-reducing bacteria in a microbial electrosynthesis system[J]. Bioresource Technology, 2017, 241:821-829.
张尧,张闻杰,蒋永,等. 生物电化学系统固定二氧化碳同时产生乙酸和丁酸[J]. 应用与环境生物学报,2014,20(2):174-178. ZHANG Y, ZHANG W J, JIANG Y, et al. Bio-electrochemical system fixed carbon dioxide and acetic acid and butyric acid simultaneously[J]. Journal of Applied and Environmental Biology, 2014, 20(2):174-178(in Chinese).
CHENG S A, LOGAN B E. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells[J]. Electrochemistry Communications, 2007, 9(3):492-496.
SANGEETHA T, GUO Z, LIU W Z, et al. Cathode material as an influencing factor on beer wastewater treatment and methane production in a novel integrated upflow microbial electrolysis cell (Upflow-MEC)[J]. International Journal of Hydrogen Energy, 2016, 41(4):2189-2196.
GUO Z C, TGANGAVEL S, WANG L, et al. Efficient methane production from beer wastewater in a membraneless microbial electrolysis cell with a stacked cathode:The effect of the cathode/anode ratio on bioenergy recovery[J]. Energy & Fuels, 2016, 31(1):615-620.
BAEK G, KIM J, LEE S, et al. Development of biocathode during repeated cycles of bioelectrochemical conversion of carbon dioxide to methane[J]. Bioresource Technology, 2017, 241:1201-1207.
VAN EERTEN-JANSEN M C A A, HEIJINE A T, BUISMAN C J N,et al. Microbial electrolysis cells for production of methane from CO2:Long-term performance and perspectives[J]. International Journal of Energy Research, 2012, 36(6):809-819.
VAN EERTEN-JANSEN M C A A, JANSEN N C, PLUGGE C M,et al. Analysis of the mechanisms of bioelectrochemical methane production by mixed cultures[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(5):963-970.
BAYR S, RINTALA J. Thermophilic anaerobic digestion of pulp and paper mill primary sludge and co-digestion of primary and secondary sludge[J]. Water Research, 2012, 46(15):4713-4720.
CHRISTY M. DYKSTRA S G P. Evaluation of gas and carbon transport in a methanogenic bioelectrochemical system (BES)[J]. Biotechnology and Bioengineering, 2016, 114(5):961-969.
BRETSCHGER O, CARPENTER K, PHAN T, et al. Functional and taxonomic dynamics of an electricity-consuming methane-producing microbial community[J]. Bioresource Technology,2015, 195:254-264.
DYKSTRA C M, PAVLOSTATHIS S G. Zero-valent iron enhances biocathodic carbon dioxide reduction to methane[J]. Environmental Science & Technology, 2017, 51(21):12956-12964.
VAN EERTEN-JANSEN M C A A, VELDHOEN A B, PLUGGE C M, et al. Microbial community analysis of a methane-producing biocathode in a bioelectrochemical system[J]. Archaea, 2013, 2013:481784-481795.
唐韵,李福健,成少安. 直接二氧化碳还原成甲烷的研究进展[J]. 能源工程,2017(5):38-47. TANG Y, LI F J, CHENG S A. Current status of methane production vis direct CO2 reduction[J]. Energy Engineering, 2017(5):38-47(in Chinese).
ZHEN G Y, KOBAYASHI T, LU X Q, et al. Understanding methane bioelectrosynthesis from carbon dioxide in a two-chamber microbial electrolysis cells (MECs) containing a carbon biocathode[J]. Bioresource Technology, 2015, 186:141-148.
LI J, WANG J, LUAN Z, et al. Biological sulfate removal from acrylic fiber manufacturing wastewater using a two-stage UASB reactor[J]. Journal of Environmental Science, 2012, 24(2):343-350.
GARCIA-DE-LOMAS J, CORZO A, PORTILLO M C, et al. Nitrate stimulation of indigenous nitrate-reducing, sulfide-oxidising bacterial community in wastewater anaerobic biofilms[J]. Water Research, 2007, 41(14):3121-3131.
CROESE E, PEREIRA M A, EUVERINK G J, et al. Analysis of the microbial community of the biocathode of a hydrogen-producing microbial electrolysis cell[J]. Applied Microbiology and Biotechnology, 2011, 92(5):1083-1093.
徐恒, 汪翠萍, 王凯军. 不同碳源对产甲烷生物阴极性能的影响[J]. 高等学校化学学报, 2015, 36(2):344-348. XU H, WANG C P, WANG K J. Effects of different carbon sources on the performance of methanogenic biocathode[J]. Chemical Journal of Chinese Universities, 2015, 36(2):344-348(in Chinese).
GREGORY K B, BOND D R, LOVLEY D R. Graphite electrodes as electron donors for anaerobic respiration[J]. Environmental Microbiology, 2004, 6(6):596-604.
NEVIN K P, HENSLEY S A, FRANKS A E, et al. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms[J]. Applied and Environmental Microbiology, 2011, 77(9):2882-2886.
BLANCHET E, DUQUENNE F, RAFRAFI Y, et al. Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO2 reduction[J]. Energy & Environmental Science, 2015, 8(12):3731-3744.
SCHLAGER S, HABERBAUER M, FUCHSBAUER A, et al. Bio-electrocatalytic application of microorganisms for carbon dioxide reduction to methane[J]. Chemsuschem, 2017, 10(1):226-233.
DEUTZMANN J S, SAHIN M, SPORMANN A M. Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis[J]. Mbio, 2015, 6(2):1-8.
ROZENDAL R A, HAMELERS H V, MOLENKAMP R J, et al. Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes[J]. Water Research, 2007, 41(9):1984-1994.
TICE R C, KIM Y. Energy efficient reconcentration of diluted human urine using ion exchange membranes in bioelectrochemical systems[J]. Water Research, 2014, 64:61-72.
SLEUTELS T H J A, HAMELERS H V M, ROZENDAL R A, et al. Ion transport resistance in microbial electrolysis cells with anion and cation exchange membranes[J]. International Journal of Hydrogen Energy, 2009, 34(9):3612-3620.
ZEPPILLI M, LAI A, VILLANO M, et al. Anion vs cation exchange membrane strongly affect mechanisms and yield of CO2 fixation in a microbial electrolysis cell[J]. Chemical Engineering Journal, 2016, 304:10-19.
ZHEN G Y, LU X Q, KUMAR G, et al. Microbial electrolysis cell platform for simultaneous waste biorefinery and clean electrofuels generation:Current situation, challenges and future perspectives[J]. Progress in Energy and Combustion Science, 2017, 63:119-145.