微生物电解池:生物电催化辅助CO2甲烷化技术

郑韶娟, 陆雪琴, 张衷译, 甄广印, 赵由才. 微生物电解池:生物电催化辅助CO2甲烷化技术[J]. 环境化学, 2019, (7): 1666-1674. doi: 10.7524/j.issn.0254-6108.2018091502
引用本文: 郑韶娟, 陆雪琴, 张衷译, 甄广印, 赵由才. 微生物电解池:生物电催化辅助CO2甲烷化技术[J]. 环境化学, 2019, (7): 1666-1674. doi: 10.7524/j.issn.0254-6108.2018091502
ZHENG Shaojuan, LU Xueqin, ZHANG Zhongyi, ZHEN Guangyin, ZHAO Youcai. Microbial electrolysis cell (MEC): A new platform for CO2 bioelectromethanogenesis assisted by bioelectrocatalysis[J]. Environmental Chemistry, 2019, (7): 1666-1674. doi: 10.7524/j.issn.0254-6108.2018091502
Citation: ZHENG Shaojuan, LU Xueqin, ZHANG Zhongyi, ZHEN Guangyin, ZHAO Youcai. Microbial electrolysis cell (MEC): A new platform for CO2 bioelectromethanogenesis assisted by bioelectrocatalysis[J]. Environmental Chemistry, 2019, (7): 1666-1674. doi: 10.7524/j.issn.0254-6108.2018091502

微生物电解池:生物电催化辅助CO2甲烷化技术

    通讯作者: 甄广印, E-mail: gyzhen@des.ecnu.edu.cn
  • 基金项目:

    国家自然科学基金青年项目(51808226),中央高校基本科研业务费(40500-20101-222001,40500-20101-222078,13903-120215-10435),上海市"科技创新行动计划""一带一路"青年科学家交流国际合作项目(17230741100),上海高校特聘教授(东方学者)计划(TP2017041)和上海市浦江人才计划项目(17PJ1402100)资助.

Microbial electrolysis cell (MEC): A new platform for CO2 bioelectromethanogenesis assisted by bioelectrocatalysis

    Corresponding author: ZHEN Guangyin, gyzhen@des.ecnu.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation Youth Project(51808226), the Fundamental Research Funds for the Central Universities (40500-20101-222001, 40500-20101-222078, 13903-120215-10435), Shanghai Science and Technology Innovation Action Plan, "One Belt, One Road" Young Scientists Exchange International Cooperation Project (17230741100), Shanghai University Distinguished Professor (Oriental Scholar) Program(TP2017041) and the Shanghai Pujiang Program (17PJ1402100).
  • 摘要: 微生物电解池(microbial electrolysis cell,MEC)在污染物去除、CO2捕获与碳转化以及可再生能源的生物合成等方面具有巨大潜力,对于缓解能源危机与温室效应具有重要指导意义.尽管目前在作用原理、参数优化和机制探索方面有了重大进展,但MEC从概念设计到技术转化仍面临着诸多难题和巨大挑战.本论文介绍了基于MEC的CO2电甲烷化技术的基本理论与最新研究进展,并对电甲烷化过程中膜面污染形成、生物阴极电活性功能菌富集及其胞外电子传递机制等进行了系统阐述,以期为MEC在CO2电甲烷化的工程应用提供理论和技术参考.
  • 加载中
  • [1] QIAO J L, LIU Y Y, HONG F, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews, 2014, 43(2):631-675.
    [2] ASADI M, KIM K, LIU C, et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid[J]. Science, 2016, 353(6298):467-470.
    [3] GAO S, LIN Y, JIAO X C, et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel[J]. Nature, 2016, 529(7584):68-71.
    [4] LOGAN B E, CALL D, CHENG S, et al. Microbial electrolysis cells for high yield hydrogen gas production from organic matter[J]. Environmental Science & Technology, 2008, 42(23):8630-8640.
    [5] LIU X W, LI W W, YU H Q. Cathodic catalysts in bioelectrochemical systems for energy recovery from wastewater[J]. Chemical Society Reviews, 2014, 43(22):7718-7745.
    [6] CHENG S A, XING D F, CALL D F, et al. Direct biological conversion of electrical current into methane by electromethanogenesis[J]. Environmental Science & Technology, 2009, 43(10):3953-3958.
    [7] VILLANO M, AULENTA F, CIUCCI C, et al. Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture[J]. Bioresource Technology, 2010, 101:3085-3090.
    [8] FU Q, KURAMOCHI Y, FUKUSHIMA N, et al. Bioelectrochemical analyses of the development of a thermophilic biocathode catalyzing electromethanogenesis[J]. Environmental Science & Technology, 2015, 49(2):1225-1232.
    [9] BATTLE-VILANOVA P, PUIG S, GONZALEZ-OLMOS R, et al. Deciphering the electron transfer mechanisms for biogas upgrading to biomethane within a mixed culture biocathode[J]. RSC Advances, 2015, 5(64):52243-52251.
    [10] XU H, WANG K, HOLMES D E. Bioelectrochemical removal of carbon dioxide (CO2):An innovative method for biogas upgrading[J]. Bioresource Technology, 2014, 173:392-398.
    [11] SATO K, KAWAGUCHI H, KOBAYASHI H. Bio-electrochemical conversion of carbon dioxide to methane in geological storage reservoirs[J]. Energy Conversion and Management, 2013, 66(1):343-350.
    [12] LUO X, ZHANG F, LIU J, et al. Methane production in microbial reverse-electrodialysis methanogenesis cells (MRMCs) using thermolytic solutions[J]. Environmental Science & Technology, 2014, 48(15):8911-8918.
    [13] 蒋永,苏敏,张尧,等. 生物电化学系统还原二氧化碳同时合成甲烷和乙酸[J]. 应用于环境生物学报, 2013,19(5):833-837.

    JIANG Y, SU M, ZHANG Y, et al. Simultaneous production of methane and acetate from carbon dioxide with bioelectrochemical systems[J]. Chinese Journal of Appplied Environmental Biology, 2013, 19(5):833-837(in Chinese).

    [14] ZHEN G Y, LU X Q, KOBAYASHI T, et al. Promoted electromethanosynthesis in a two-chamber microbial electrolysis cells (MECs) containing a hybrid biocathode covered with graphite felt (GF)[J]. Chemical Engineering Journal, 2016, 284:1146-1155.
    [15] DYKSTRA C M, PAVLOSTATHIS S G. Methanogenic biocathode microbial community development and the role of bacteria[J]. Environmental Science & Technology, 2017, 51(9):5306-5316.
    [16] WANG Q N, DONG H, YU H B, et al. Enhanced electrochemical reduction of carbon dioxide to formic acid using a two-layer gas diffusion electrode in a microbial electrolysis cell[J]. RSC Advances, 2015, 5(14):10346-10351.
    [17] JOURDIN L, FREGUIA S, FLEXER V, et al. Bringing high-Rate, CO2-based microbial electrosynthesis closer to practical implementation through improved electrode design and operating conditions[J]. Environmental Science & Technology, 2016, 50(4):1982-1989.
    [18] ALBO J, ALVAREZ-GUERRA M, CASTARIO P, et al. Towards the electrochemical conversion of carbon dioxide into methanol[J]. Green Chemistry, 2015, 17(4):2304-2324.
    [19] XIANG Y B, LIU G L, ZHANG R D, et al. Acetate production and electron utilization facilitated by sulfate-reducing bacteria in a microbial electrosynthesis system[J]. Bioresource Technology, 2017, 241:821-829.
    [20] 张尧,张闻杰,蒋永,等. 生物电化学系统固定二氧化碳同时产生乙酸和丁酸[J]. 应用与环境生物学报,2014,20(2):174-178.

    ZHANG Y, ZHANG W J, JIANG Y, et al. Bio-electrochemical system fixed carbon dioxide and acetic acid and butyric acid simultaneously[J]. Journal of Applied and Environmental Biology, 2014, 20(2):174-178(in Chinese).

    [21] CHENG S A, LOGAN B E. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells[J]. Electrochemistry Communications, 2007, 9(3):492-496.
    [22] SANGEETHA T, GUO Z, LIU W Z, et al. Cathode material as an influencing factor on beer wastewater treatment and methane production in a novel integrated upflow microbial electrolysis cell (Upflow-MEC)[J]. International Journal of Hydrogen Energy, 2016, 41(4):2189-2196.
    [23] GUO Z C, TGANGAVEL S, WANG L, et al. Efficient methane production from beer wastewater in a membraneless microbial electrolysis cell with a stacked cathode:The effect of the cathode/anode ratio on bioenergy recovery[J]. Energy & Fuels, 2016, 31(1):615-620.
    [24] BAEK G, KIM J, LEE S, et al. Development of biocathode during repeated cycles of bioelectrochemical conversion of carbon dioxide to methane[J]. Bioresource Technology, 2017, 241:1201-1207.
    [25] VAN EERTEN-JANSEN M C A A, HEIJINE A T, BUISMAN C J N,et al. Microbial electrolysis cells for production of methane from CO2:Long-term performance and perspectives[J]. International Journal of Energy Research, 2012, 36(6):809-819.
    [26] VAN EERTEN-JANSEN M C A A, JANSEN N C, PLUGGE C M,et al. Analysis of the mechanisms of bioelectrochemical methane production by mixed cultures[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(5):963-970.
    [27] BAYR S, RINTALA J. Thermophilic anaerobic digestion of pulp and paper mill primary sludge and co-digestion of primary and secondary sludge[J]. Water Research, 2012, 46(15):4713-4720.
    [28] CHRISTY M. DYKSTRA S G P. Evaluation of gas and carbon transport in a methanogenic bioelectrochemical system (BES)[J]. Biotechnology and Bioengineering, 2016, 114(5):961-969.
    [29] BRETSCHGER O, CARPENTER K, PHAN T, et al. Functional and taxonomic dynamics of an electricity-consuming methane-producing microbial community[J]. Bioresource Technology,2015, 195:254-264.
    [30] DYKSTRA C M, PAVLOSTATHIS S G. Zero-valent iron enhances biocathodic carbon dioxide reduction to methane[J]. Environmental Science & Technology, 2017, 51(21):12956-12964.
    [31] VAN EERTEN-JANSEN M C A A, VELDHOEN A B, PLUGGE C M, et al. Microbial community analysis of a methane-producing biocathode in a bioelectrochemical system[J]. Archaea, 2013, 2013:481784-481795.
    [32] 唐韵,李福健,成少安. 直接二氧化碳还原成甲烷的研究进展[J]. 能源工程,2017(5):38-47. TANG Y, LI F J, CHENG S A. Current status of methane production vis direct CO2

    reduction[J]. Energy Engineering, 2017(5):38-47(in Chinese).

    [33] ZHEN G Y, KOBAYASHI T, LU X Q, et al. Understanding methane bioelectrosynthesis from carbon dioxide in a two-chamber microbial electrolysis cells (MECs) containing a carbon biocathode[J]. Bioresource Technology, 2015, 186:141-148.
    [34] LI J, WANG J, LUAN Z, et al. Biological sulfate removal from acrylic fiber manufacturing wastewater using a two-stage UASB reactor[J]. Journal of Environmental Science, 2012, 24(2):343-350.
    [35] GARCIA-DE-LOMAS J, CORZO A, PORTILLO M C, et al. Nitrate stimulation of indigenous nitrate-reducing, sulfide-oxidising bacterial community in wastewater anaerobic biofilms[J]. Water Research, 2007, 41(14):3121-3131.
    [36] CROESE E, PEREIRA M A, EUVERINK G J, et al. Analysis of the microbial community of the biocathode of a hydrogen-producing microbial electrolysis cell[J]. Applied Microbiology and Biotechnology, 2011, 92(5):1083-1093.
    [37] 徐恒, 汪翠萍, 王凯军. 不同碳源对产甲烷生物阴极性能的影响[J]. 高等学校化学学报, 2015, 36(2):344-348.

    XU H, WANG C P, WANG K J. Effects of different carbon sources on the performance of methanogenic biocathode[J]. Chemical Journal of Chinese Universities, 2015, 36(2):344-348(in Chinese).

    [38] GREGORY K B, BOND D R, LOVLEY D R. Graphite electrodes as electron donors for anaerobic respiration[J]. Environmental Microbiology, 2004, 6(6):596-604.
    [39] NEVIN K P, HENSLEY S A, FRANKS A E, et al. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms[J]. Applied and Environmental Microbiology, 2011, 77(9):2882-2886.
    [40] BLANCHET E, DUQUENNE F, RAFRAFI Y, et al. Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO2 reduction[J]. Energy & Environmental Science, 2015, 8(12):3731-3744.
    [41] SCHLAGER S, HABERBAUER M, FUCHSBAUER A, et al. Bio-electrocatalytic application of microorganisms for carbon dioxide reduction to methane[J]. Chemsuschem, 2017, 10(1):226-233.
    [42] DEUTZMANN J S, SAHIN M, SPORMANN A M. Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis[J]. Mbio, 2015, 6(2):1-8.
    [43] ROZENDAL R A, HAMELERS H V, MOLENKAMP R J, et al. Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes[J]. Water Research, 2007, 41(9):1984-1994.
    [44] TICE R C, KIM Y. Energy efficient reconcentration of diluted human urine using ion exchange membranes in bioelectrochemical systems[J]. Water Research, 2014, 64:61-72.
    [45] SLEUTELS T H J A, HAMELERS H V M, ROZENDAL R A, et al. Ion transport resistance in microbial electrolysis cells with anion and cation exchange membranes[J]. International Journal of Hydrogen Energy, 2009, 34(9):3612-3620.
    [46] ZEPPILLI M, LAI A, VILLANO M, et al. Anion vs cation exchange membrane strongly affect mechanisms and yield of CO2 fixation in a microbial electrolysis cell[J]. Chemical Engineering Journal, 2016, 304:10-19.
    [47] ZHEN G Y, LU X Q, KUMAR G, et al. Microbial electrolysis cell platform for simultaneous waste biorefinery and clean electrofuels generation:Current situation, challenges and future perspectives[J]. Progress in Energy and Combustion Science, 2017, 63:119-145.
  • 加载中
计量
  • 文章访问数:  2517
  • HTML全文浏览数:  2517
  • PDF下载数:  67
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-09-15
郑韶娟, 陆雪琴, 张衷译, 甄广印, 赵由才. 微生物电解池:生物电催化辅助CO2甲烷化技术[J]. 环境化学, 2019, (7): 1666-1674. doi: 10.7524/j.issn.0254-6108.2018091502
引用本文: 郑韶娟, 陆雪琴, 张衷译, 甄广印, 赵由才. 微生物电解池:生物电催化辅助CO2甲烷化技术[J]. 环境化学, 2019, (7): 1666-1674. doi: 10.7524/j.issn.0254-6108.2018091502
ZHENG Shaojuan, LU Xueqin, ZHANG Zhongyi, ZHEN Guangyin, ZHAO Youcai. Microbial electrolysis cell (MEC): A new platform for CO2 bioelectromethanogenesis assisted by bioelectrocatalysis[J]. Environmental Chemistry, 2019, (7): 1666-1674. doi: 10.7524/j.issn.0254-6108.2018091502
Citation: ZHENG Shaojuan, LU Xueqin, ZHANG Zhongyi, ZHEN Guangyin, ZHAO Youcai. Microbial electrolysis cell (MEC): A new platform for CO2 bioelectromethanogenesis assisted by bioelectrocatalysis[J]. Environmental Chemistry, 2019, (7): 1666-1674. doi: 10.7524/j.issn.0254-6108.2018091502

微生物电解池:生物电催化辅助CO2甲烷化技术

    通讯作者: 甄广印, E-mail: gyzhen@des.ecnu.edu.cn
  • 1. 华东师范大学生态与环境科学学院, 上海市城市化生态过程与生态恢复重点实验室, 上海, 200241;
  • 2. 崇明生态研究院, 上海, 200062;
  • 3. 上海污染控制与生态安全研究院, 上海, 200092;
  • 4. 同济大学污染控制与资源化研究国家重点实验室, 上海, 200092
基金项目:

国家自然科学基金青年项目(51808226),中央高校基本科研业务费(40500-20101-222001,40500-20101-222078,13903-120215-10435),上海市"科技创新行动计划""一带一路"青年科学家交流国际合作项目(17230741100),上海高校特聘教授(东方学者)计划(TP2017041)和上海市浦江人才计划项目(17PJ1402100)资助.

摘要: 微生物电解池(microbial electrolysis cell,MEC)在污染物去除、CO2捕获与碳转化以及可再生能源的生物合成等方面具有巨大潜力,对于缓解能源危机与温室效应具有重要指导意义.尽管目前在作用原理、参数优化和机制探索方面有了重大进展,但MEC从概念设计到技术转化仍面临着诸多难题和巨大挑战.本论文介绍了基于MEC的CO2电甲烷化技术的基本理论与最新研究进展,并对电甲烷化过程中膜面污染形成、生物阴极电活性功能菌富集及其胞外电子传递机制等进行了系统阐述,以期为MEC在CO2电甲烷化的工程应用提供理论和技术参考.

English Abstract

参考文献 (47)

返回顶部

目录

/

返回文章
返回