UDDIN T M, CHAKRABORTY A J, KHUSRO A, et al. Antibiotic resistance in microbes:history, mechanisms, therapeutic strategies and future prospects[J]. Journal of infection and public health, 2021, 14(12):1750-1766.
|
朱冬,陈青林,丁晶,等.土壤生态系统中抗生素抗性基因与星球健康:进展与展望[J].中国科学:生命科学, 2019, 49(12):1652-1663.
ZHU D, CHEN Q L, DING J, et al. Antibiotic resistance genes in the soil ecosystem and planetary health:progress and prospect[J]. Scientia sinica (vitae), 2019, 49(12):1652-1663.
|
BERENDONK T U, MANAIA C M, MERLIN C, et al. Tackling antibiotic resistance:the environmental framework[J]. Nature reviews microbiology, 2015, 13(5):310-317.
|
CHEN Q L, AN X L, LI H, et al. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil[J]. Environment international, 2016, 92:1-10.
|
KIM D W, CHA C J. Antibiotic resistome from the One-Health perspective:understanding and controlling antimicrobial resistance transmission[J]. Experimental&molecular medicine, 2021, 53(3):301-309.
|
CHEN Q L, AN X L, LI H, et al. Do manure-borne or indigenous soil microorganisms influence the spread of antibiotic resistance genes in manured soil?[J]. Soil biology and biochemistry, 2017, 114:229-237.
|
CHRISTOU A, AGVERA A, BAYONA J M, et al. The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment:the knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes-A review[J]. Water research, 2017, 123:448-467.
|
LETTEN A D, HALL A R, LEVINE J M. Using ecological coexistence theory to understand antibiotic resistance and microbial competition[J]. Nature ecology&evolution, 2021, 5(4):431-441.
|
王蕾,姜锦林,董姝楠,等.我国土壤环境基准受试无脊椎动物筛选研究[J].生态毒理学报, 2024, 19(1):91-102.
WANG L, JIANG J L, DONG S N, et al. Screening of test invertebrate organisms for deriving soil environmental criteria in China[J]. Asian journal of ecotoxicology, 2024, 19(1):91-102.
|
BRUNETTI M, MAGOGA G, CUSSIGH A, et al. Soil invertebrate biodiversity and functionality within the intensively farmed areas of the Po Valley[J]. Applied soil ecology, 2024, 197:105326.
|
孙新,李琪,姚海凤,等.土壤动物与土壤健康[J].土壤学报, 2021, 58(5):1073-1083.
SUN X, LI Q, YAO H F, et al. Soil fauna and soil health[J]. Acta pedologica sinica, 2021, 58(5):1073-1083.
|
郝操, CHEN W,吴东辉.土壤动物肠道微生物多样性研究进展[J].生态学报, 2022, 42(8):3093-3105.
HAO C, CHEN T W, WU D H. A review on gut microbial diversity of soil animals[J]. Acta ecologica sinica, 2022, 42(8):3093-3105.
|
ZHU D, XIANG Q, YANG X R, et al. Trophic transfer of antibiotic resistance genes in a soil detritus food chain[J]. Environmental science&technology, 2019, 53(13):7770-7781.
|
GAO F Z, HE L Y, HE L X, et al. Untreated swine wastes changed antibiotic resistance and microbial community in the soils and impacted abundances of antibiotic resistance genes in the vegetables[J]. Science of the total environment, 2020, 741:140482.
|
EISENBEISG. Biology of soil invertebrates[M]//EISENBEIS G. Intestinal microorganisms of termites and other invertebrates. Berlin:Springer Berlin, 2006:3-53.
|
NAHMANI J, CAPOWIEZ Y, LAVELLE P. Effects of metal pollution on soil macroinvertebrate burrow systems[J]. Biology and fertility of soils, 2005, 42(1):31-39.
|
KOLESNIKOVA A A, TASKAEVA A A, KRIVOLUTSKII D A, et al. Condition of the soil fauna near the epicenter of an underground nuclear explosion in the Northern Urals[J]. Russian journal of ecology, 2005, 36(3):150-157.
|
徐建英,赵春桃,魏东斌.生物毒性检测在水质安全评价中的应用[J].环境科学, 2014, 35(10):3991-3997.
XU J Y, ZHAO C T, WEI D B. Toxicity tests and their application in safety assessment of water quality[J]. Environmental science, 2014, 35(10):3991-3997.
|
赵然,邢美燕,杨格格,等.蚯蚓生物滤池削减剩余污泥中ARGs和ARB的效果研究[J].环境工程, 2022, 40(12):112-120.
ZHAO R, XING M Y, YANG G G, et al. Removal effect of vermifiltration on ARGs and ARB in excess sludge[J]. Environmental engineering, 2022, 40(12):112-120.
|
代杜铃,姜瑢,荣丽,等.土壤污染生态阈值研究进展[J].生态毒理学报, 2023, 18(6):98-111.
DAI D L, JIANG R, RONG L, et al. Advances in ecological thresholds of soil contaminants[J]. Asian journal of ecotoxicology, 2023, 18(6):98-111.
|
SINGER D, SEPPEY C V W, LENTENDU G, et al. Protist taxonomic and functional diversity in soil, freshwater and marine ecosystems[J]. Environment international, 2021, 146:106262.
|
邵元虎,张卫信,刘胜杰,等.土壤动物多样性及其生态功能[J].生态学报, 2015, 35(20):6614-6625.
SHAO Y H, ZHANG W X, LIU S J, et al. Diversity and function of soil fauna[J]. Acta ecologica sinica, 2015, 35(20):6614-6625.
|
VAN DEN HOOGEN J, GEISEN S, ROUTH D, et al. Soil nematode abundance and functional group composition at a global scale[J]. Nature, 2019, 572(7768):194-198.
|
IQBAL S, JONESM G K. Nematodes[M]//IQBAL S, JONES M G K. Encyclopedia of applied plant sciences. 2nd Edition. Oxford:Academic Press, 2017:113-119.
|
YEATES G W. Nematodes as soil indicators:functional and biodiversity aspects[J]. Biology and fertility of soils, 2003, 37(4):199-210.
|
BARDGETT R D, VAN DER PUTTEN W H. Belowground biodiversity and ecosystem functioning[J]. Nature, 2014, 515(7528):505-511.
|
BONGERS T. The maturity index:an ecological measure of environmental disturbance based on nematode species composition[J]. Oecologia, 1990, 83(1):14-19.
|
王东昌,杨振玲,张乃琴,等.我国土壤螨研究现状进展[J].莱阳农学院学报, 2001, 18(1):61-65.
WANG D C, YANG Z L, ZHANG N Q, et al. Research status and progress of soil mites in China[J]. Journal of Laiyang Agricultural College, 2001, 18(1):61-65.
|
连旭,隋玉柱,武海涛,等.秸秆还田对黑土农田土壤甲螨群落结构的影响[J].农业环境科学学报, 2017, 36(1):134-142.
LIAN X, SUI Y Z, WU H T, et al. Effect of on-site recycling of straw on community structure of soil Oribatida in black soil farmland[J]. Journal of agro-environment science, 2017, 36(1):134-142.
|
SINGH A, KARMEGAM N, SINGH G S, et al. Earthworms and vermicompost:an eco-friendly approach for repaying nature's debt[J]. Environmental geochemistry and health, 2020, 42(6):1617-1642.
|
BLOUIN M, HODSON M E, DELGADO E A, et al. A review of earthworm impact on soil function and ecosystem services[J]. European journal of soil science, 2013, 64(2):161-182.
|
GONG X, JIANG Y Y, ZHENG Y, et al. Earthworms differentially modify the microbiome of arable soils varying in residue management[J]. Soil biology and biochemistry, 2018, 121:120-129.
|
AL-MALIKI S, AL-TAEY D K A, AL-MAMMORI H Z. Earthworms and eco-consequences:considerations to soil biological indicators and plant function:a review[J]. Acta ecologica sinica, 2021, 41(6):512-523.
|
DAHMS H U, WON E J, KIM H S, et al. Potential of the small cyclopoid copepod Paracyclopina nana as an invertebrate model for ecotoxicity testing[J]. Aquatic toxicology, 2016, 180:282-294.
|
BANG H S, HAN M S, NA Y E, et al. Biodiversity of fauna and flora in Korean paddy field[C]. Marco:Proceedings of the Marco Symposium "Challenges for Agro-Environmental Research in Monsoon Asia", 2010:441-707.
|
ROSSARO B, MARZIALI L, CORTESI P. The effects of tricyclazole treatment on aquatic invertebrates in a rice paddy field[J]. CLEAN-soil, air, water, 2014, 42(1):29-35.
|
PRASETYO D B, KOJI S, TUNO N. A comparison of aquatic invertebrate diversity between paddy fields under traditional and modern management in Western Japan[J]. Research in agriculture, 2016, 1(1):25.
|
江云珠,汤圣祥,金田彰二,等.灌溉水质对稻田沟渠水栖无脊椎动物多样性的影响[J].浙江农业学报, 1998, 10(2):71-74.
JIANG Y Z, TANG S X, JIN T, et al. Effect of irrigation water quality on biodiversity of invertebrates living in water of rice field and ditch[J]. Acta agriculturae zhejiangensis, 1998, 10(2):71-74.
|
JOUSSET A. Ecological and evolutive implications of bacterial defences against predators[J]. Environmental microbiology, 2012, 14(8):1830-1843.
|
JOUSSET A, LARA E, WALL L G, et al. Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape protozoan grazing[J]. Applied and environmental microbiology, 2006, 72(11):7083-7090.
|
NGUYEN T B, BONKOWSKI M, DUMACK K, et al. Protistan predation selects for antibiotic resistance in soil bacterial communities[J]. The ISME journal, 2023, 17(12):2182-2189.
|
LI H Z, ZHU D, SUN A Q, et al. Effects of soil protists on the antibiotic resistome under long term fertilization[J]. Environmental pollution, 2022, 307:119516.
|
MCCUDDIN Z P, CARLSON S A, RASMUSSEN M A, et al. Klebsiella to Salmonella gene transfer within rumen protozoa:implications for antibiotic resistance and rumen defaunation[J]. Veterinary microbiology, 2006, 114(3/4):275-284.
|
CAIRNS J, JALASVUORI M, OJALA V, et al. Conjugation is necessary for a bacterial plasmid to survive under protozoan predation[J]. Biology letters, 2016, 12(2):20150953.
|
GUTIÉRREZ C, FERNÁNDEZ C, ESCUER M, et al. Effect of soil properties, heavy metals and emerging contaminants in the soil nematodes diversity[J]. Environmental pollution, 2016, 213:184-194.
|
LONG N P, KANG J S, KIM H M. Caenorhabditis elegans:a model organism in the toxicity assessment of environmental pollutants[J]. Environmental science and pollution research international, 2023, 30(14):39273-39287.
|
ZHENG Y G, YU Z Y, ZHANG J. Multi-generational effects of enrofloxacin on lifespan and reproduction of Caenorhabditis elegans with SKN-1-mediated antioxidant responses and lipid metabolism disturbances[J]. Science of the total environment, 2022, 804:150250.
|
ZHOU J H, SUN X W, JIAO J G, et al. Dynamic changes of bacterial community under the influence of bacterial-feeding nematodes grazing in prometryne contaminated soil[J]. Applied soil ecology, 2013, 64:70-76.
|
KOPPEL N, MAINI REKDAL V, BALSKUS E P. Chemical transformation of xenobiotics by the human gut microbiota[J]. Science, 2017, 356(6344):eaag2770.
|
BHATTACHARYA S S, YADAV J S. Microbial P450 enzymes in bioremediation and drug discovery:emerging potentials and challenges[J]. Current protein&peptide science, 2018, 19(1):75-86.
|
WANG X, ZHANG Z H, YUAN K K, et al. Cytochrome P450-mediated co-metabolism of fluoroquinolones by Haematococcus lacustris for simultaneously promoting astaxanthin and lipid accumulation[J]. Chemical engineering journal, 2023, 465:142770.
|
MENZEL R, BOGAERT T, ACHAZI R. A systematic gene expression screen of Caenorhabditis elegans cytochrome P450 genes reveals CYP35 as strongly xenobiotic inducible[J]. Archives of biochemistry and biophysics, 2001, 395(2):158-168.
|
FÉLIX M A, BRAENDLE C. The natural history of Caenorhabditis elegans[J]. Current biology, 2010, 20(22):R965-R969.
|
KHAN F, JAIN S, OLOKETUYI S F. Bacteria and bacterial products:Foe and friends to Caenorhabditis elegans[J]. Microbiological research, 2018, 215:102-113.
|
BROOKS K K, LIANG B, WATTS J L. The influence of bacterial diet on fat storage in C. elegans[J]. PLoS One, 2009, 4(10):e7545.
|
PORTAL-CELHAY C, BLASER M J. Competition and resilience between founder and introduced bacteria in the Caenorhabditis elegans gut[J]. Infection and immunity, 2012, 80(3):1288-1299.
|
ZHOU G W, ZHENG F, FAN X T, et al. Host age increased conjugal plasmid transfer in gut microbiota of the soil invertebrate Caenorhabditis elegans[J]. Journal of hazardous materials, 2022, 424:127525.
|
CHAN S Y, LIU S Y, WU R B, et al. Simultaneous dissemination of nanoplastics and antibiotic resistance by nematode couriers[J]. Environmental science&technology, 2023, 57(23):8719-8727.
|
TOPALOVIĆ O, HEUER H. Plant-nematode interactions assisted by microbes in the rhizosphere[J]. Current issues in molecular biology, 2019, 30:75-88.
|
DONG W H, LIU Y, HOU J, et al. Nematodes degrade extracellular antibiotic resistance genes by secreting DNase Ⅱ encoded by the nuc-1 gene[J]. Environmental science&technology, 2023, 57(32):12042-12052.
|
ZHENG F, ZHU D, GILES M, et al. Mineral and organic fertilization alters the microbiome of a soil nematode Dorylaimus stagnalis and its resistome[J]. Science of the total environment, 2019, 680:70-78.
|
ZHENG F, BI Q F, GILES M, et al. Fates of antibiotic resistance genes in the gut microbiome from different soil fauna under long-term fertilization[J]. Environmental science&technology, 2021, 55(1):423-432.
|
YANG L H, WANG X T, MA J, et al. Nanoscale polystyrene intensified the microbiome perturbation and antibiotic resistance genes enrichment in soil and Enchytraeus crypticus caused by tetracycline[J]. Applied soil ecology, 2022, 174:104426.
|
ZHU D, CHEN Q L, AN X L, et al. Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition[J]. Soil biology and biochemistry, 2018, 116:302-310.
|
WANG Y F, QIAO M, ZHU D, et al. Antibiotic resistance in the collembolan gut microbiome accelerated by the nonantibiotic drug carbamazepine[J]. Environmental science&technology, 2020, 54(17):10754-10762.
|
ZHU D, AN X L, CHEN Q L, et al. Antibiotics disturb the microbiome and increase the incidence of resistance genes in the gut of a common soil collembolan[J]. Environmental science&technology, 2018, 52(5):3081-3090.
|
ZHANG Q, ZHU D, DING J, et al. Species-specific response of the soil collembolan gut microbiome and resistome to soil oxytetracycline pollution[J]. Science of the total environment, 2019, 668:1183-1190.
|
朱冬.典型土壤动物微生物组中抗生素抗性基因的环境行为[D].北京:中国科学院大学, 2019:144-147. ZHU D. Environmental behavior of antibiotic resistance genes in a typical soil animal microbiome[D]. Beijing:University of Chinese Academy of Sciences, 2019:144
-147.
|
ZHU D, WANG H T, ZHENG F, et al. Collembolans accelerate the dispersal of antibiotic resistance genes in the soil ecosystem[J]. Soil ecology letters, 2019, 1(1):14-21.
|
SIMBANEGAVI T T, MAKUVARA Z, MARUMURE J, et al. Are earthworms the victim, facilitator or antidote of antibiotics and antibiotic resistance at the soil-animal-human interface?A One-Health perspective[J]. Science of the total environment, 2024, 945:173882.
|
LI H, LUO Q P, PU Q, et al. Earthworms reduce the dissemination potential of antibiotic resistance genes by changing bacterial co-occurrence patterns in soil[J]. Journal of hazardous materials, 2022, 426:128127.
|
YANG S D, LU C X, QIN C, et al. Mitigation effects and microbial mechanism of two ecological earthworms on the uptake of chlortetracycline and antibiotic resistance genes in lettuce[J]. Science of the total environment, 2023, 885:163907.
|
ASHWORTH D J, IBEKWE A M, MEN Y J, et al. Dissemination of antibiotics through the wastewater-soil-plant-earthworm continuum[J]. Science of the total environment, 2023, 858:159841.
|
EL-SHIMY N, ASSAYED M F, ABDEL K, et al. Bioaccumulations of oxytetracycline and heavy metal on the earthworm Aporrectodea longa[J]. Assiut University journal of multidisciplinary scientific research, 2018, 47(2):19-34.
|
PU Q, WANG H T, PAN T, et al. Enhanced removal of ciprofloxacin and reduction of antibiotic resistance genes by earthworm Metaphire vulgaris in soil[J]. Science of the total environment, 2020, 742:140409.
|
ZHANG Y, SONG K, ZHANG J Q, et al. Removal of sulfamethoxazole and antibiotic resistance genes in paddy soil by earthworms (Pheretima guillelmi):intestinal detoxification and stimulation of indigenous soil bacteria[J]. Science of the total environment, 2022, 851:158075.
|
CAO J, WANG C, DOU Z X, et al. Hyphospheric impacts of earthworms and arbuscular mycorrhizal fungus on soil bacterial community to promote oxytetracycline degradation[J]. Journal of hazardous materials, 2018, 341:346-354.
|
WANG C R, RONG H, LIU H T, et al. Detoxification mechanisms, defense responses, and toxicity threshold in the earthworm Eisenia foetida exposed to ciprofloxacin-polluted soils[J]. Science of the total environment, 2018, 612:442-449.
|
YANG S D, ZHAO L X, CHANG X P, et al. Removal of chlortetracycline and antibiotic resistance genes in soil by earthworms (epigeic Eisenia fetida and endogeic Metaphire guillelmi)[J]. Science of the total environment, 2021, 781:146679.
|
GAO X, ZHANG H, XU L H, et al. Impact of earthworms on antibiotic resistance genes removal in ampicillin-contaminated soil through bacterial community alteration[J]. Journal of environmental quality, 2024, 53(4):521-534.
|
ZHENG X X, CHAO H Z, WU Y L, et al. Contrasted effects of Metaphire guillelmi on tetracycline diffusion and dissipation in soil[J]. Journal of environmental management, 2022, 310:114776.
|
DENG S G, LI P Y, WU Y Z, et al. Eco-risk management of tylosin fermentation residues using vermicomposting[J]. Journal of environmental management, 2022, 303:114126.
|
YIN B Y, ZHANG M R, ZENG Y X, et al. The changes of antioxidant system and intestinal bacteria in earthworms (Metaphire guillelmi) on the enhanced degradation of tetracycline[J]. Chemosphere, 2021, 265:129097.
|
CHAO H Z, ZHENG X X, XIA R, et al. Incubation trial indicated the earthworm intestinal bacteria as promising biodigestor for mitigating tetracycline resistance risk in anthropogenic disturbed forest soil[J]. Science of the total environment, 2021, 798:149337.
|
HUANG K, CHEN J Y, GUAN M X, et al. Effects of biochars on the fate of antibiotics and their resistance genes during vermicomposting of dewatered sludge[J]. Journal of hazardous materials, 2020, 397:122767.
|
BAO Y Y, LI Y X, PAN C R. Effects of the removal of soil extractable oxytetracycline fractions on its bioaccumulation in earthworm and horsebean[J]. Water, air,&soil pollution, 2018, 229(3):79.
|
CAO J, JI D, WANG C, et al. Interaction between earthworms and arbuscular mycorrhizal fungi on the degradation of oxytetracycline in soils[J]. Soil biology and biochemistry, 2015, 90:283-292.
|
RAVINDRAN B, MNKENI P N S. Identification and fate of antibiotic residue degradation during composting and vermicomposting of chicken manure[J]. International journal of environmental science and technology, 2017, 14(2):263-270.
|
LIU P, SUN M H, XIA S Q, et al. Earthworms and lactic acid bacteria (LAB) cooperate to promote the biodegradation of tetracycline residues in livestock manure[J]. Waste management, 2024, 186:166-175.
|
LI W L, LI S S, ZHONG J, et al. A novel antimicrobial peptide from skin secretions of the earthworm, Pheretima guillelmi(Michaelsen)[J]. Peptides, 2011, 32(6):1146-1150.
|
CHAO H Z, KONG L Y, ZHANG H X, et al. Metaphire guillelmi gut as hospitable micro-environment for the potential transmission of antibiotic resistance genes[J]. Science of the total environment, 2019, 669:353-361.
|
BHATTACHARJEE A S, PHAN D, ZHENG C J, et al. Dissemination of antibiotic resistance genes through soil-plant-earthworm continuum in the food production environment[J]. Environment international, 2024, 183:108374.
|
徐俊杰.蚯蚓肠道消化对污泥中抗生素抗性基因水平转移的影响[D].兰州:兰州交通大学, 2023:45-59.
|
MAKUVARA Z, MARUMURE J, KARIDZAGUNDI R, et al. Vermicompost:a potential reservoir of antimicrobial resistant microbes (ARMs) and genes (ARGs)[M]//Hupenyu A M, Lydia N H, Pearson N S, et al. Vermicomposting for sustainable food systems in Africa. Springer. 2023:307-333.
|
ZHU D, DELGADO-BAQUERIZO M, SU J Q, et al. Deciphering potential roles of earthworms in mitigation of antibiotic resistance in the soils from diverse ecosystems[J]. Environmental science&technology, 2021, 55(11):7445-7455.
|
LI Z H, YUAN L, SHAO W, et al. Evaluating the interaction of soil microorganisms and gut of soil fauna on the fate and spread of antibiotic resistance genes in digested sludge-amended soil ecosystem[J]. Journal of hazardous materials, 2021, 420:126672.
|
YANG J, LIU J, XING M Y, et al. Effect of earthworms on the biochemical characterization of biofilms in vermifiltration treatment of excess sludge[J]. Bioresource technology, 2013, 143:10-17.
|
WU Y Z, DENG S G, WANG X H, et al. Discovery and mechanism of action of a novel antimicrobial peptide from an earthworm[J]. Microbiology spectrum, 2023, 11(1):e0320622.
|
HUANG K, XIA H, ZHANG Y Y, et al. Elimination of antibiotic resistance genes and human pathogenic bacteria by earthworms during vermicomposting of dewatered sludge by metagenomic analysis[J]. Bioresource technology, 2020, 297:122451.
|
CUI G Y, AHMAD BHAT S, LI W J, et al. Gut digestion of earthworms significantly attenuates cell-free and-associated antibiotic resistance genes in excess activated sludge by affecting bacterial profiles[J]. Science of the total environment, 2019, 691:644-653.
|
何文程.蚯蚓对不同土壤-植物系统中抗生素及其抗性基因影响机制研究[D].苏州:苏州科技大学, 2022:36-50.
|
LI Z J, CHEN C, ZHANG K Q, et al. Response of antibiotic resistance genes and related microorganisms to arsenic during vermicomposting of cow dung[J]. International journal of environmental research and public health, 2022, 19(21):14475.
|
HUANG K, XIA H, WU Y, et al. Effects of earthworms on the fate of tetracycline and fluoroquinolone resistance genes of sewage sludge during vermicomposting[J]. Bioresource technology, 2018, 259:32-39.
|
YANG F X, WANG X L, TIAN X L, et al. Cow manure simultaneously reshaped antibiotic and metal resistome in the earthworm gut tract by metagenomic analysis[J]. Science of the total environment, 2023, 856:159010.
|
CUI G Y, LI F S, LI S L, et al. Changes of quinolone resistance genes and their relations with microbial profiles during vermicomposting of municipal excess sludge[J]. Science of the total environment, 2018, 644:494-502.
|
TIAN X L, HAN B J, LIANG J F, et al. Tracking antibiotic resistance genes (ARGs) during earthworm conversion of cow dung in Northern China[J]. Ecotoxicology and environmental safety, 2021, 222:112538.
|
XIA H, ZHU L C, DING J G, et al. Earthworm gut digestion drives the transfer behavior of antibiotic resistance genes in layers of extracellular polymeric substances during vermicomposting of dewatered sludge[J]. Environmental research, 2024, 259:119489.
|
CHEN J, XIA H, HUANG K, et al. Earthworms restructure the distribution of extracellular antibiotics resistance genes of sludge by modifying the structure of extracellular polymeric substances during vermicomposting[J]. Journal of hazardous materials, 2023, 452:131315.
|
GUO H A, LI Z, SUN X J, et al. Impact of earthworms on suppressing dissemination of antibiotic resistance genes during vermicomposting treatment of excess sludge[J]. Bioresource technology, 2024, 406:130991.
|
XING M Y, ZHAO R, YANG G G, et al. Elimination of antibiotic-resistant bacteria and resistance genes by earthworms during vermifiltration treatment of excess sludge[J]. Environmental science and pollution research international, 2024, 31(5):7853-7871.
|
DUAN Z H, ZHU Y C, XIA H, et al. A novel strategy for eliminating antibiotic resistance genes during fertilization of dewatered sludge by earthworms:vermicomposting practice using Chinese herbal residues derived from Lianhua Qingwen as a bulking material[J]. Journal of environmental management, 2024, 349:119444.
|
HAO X X, ZHANG W J, ZHAO L B, et al. Bacillus subtilis reduces antibiotic resistance genes of animal sludge in vermicomposting by improving heat stress tolerance of Eisenia foetida and bacterial community adjustment[J]. Environmental research, 2023, 219:115088.
|
YUKGEHNAISH K, KUMAR P, SIVACHANDRAN P, et al. Gut microbiota metagenomics in aquaculture:factors influencing gut microbiome and its physiological role in fish[J]. Reviews in aquaculture, 2020, 12(3):1903-1927.
|
JIA J, GOMES-SILVA G, PLATH M, et al. Shifts in bacterial communities and antibiotic resistance genes in surface water and gut microbiota of guppies (Poecilia reticulata) in the upper Rio Uberabinha, Brazil[J]. Ecotoxicology and environmental safety, 2021, 211:111955.
|
AGERSØ Y, BRUUN M S, DALSGAARD I, et al. The tetracycline resistance gene Tet (E) is frequently occurring and present on large horizontally transferable plasmids in Aeromonas spp. from fish farms[J]. Aquaculture, 2007, 266(1/2/3/4):47-52.
|
DING C S, MA J, JIANG W X, et al. Chironomidae larvae:a neglected enricher of antibiotic resistance genes in the food chain of freshwater environments[J]. Environmental pollution, 2021, 285:117486.
|
ECKERT E M, DI CESARE A, STENZEL B, et al. Daphnia as a refuge for an antibiotic resistance gene in an experimental freshwater community[J]. Science of the total environment, 2016, 571:77-81.
|
OLANREWAJU T O, MCCARRON M, DOOLEY J S G, et al. Transfer of antibiotic resistance genes between Enterococcus faecalis strains in filter feeding zooplankton Daphnia magna and Daphnia pulex[J]. Science of the total environment, 2019, 659:1168-1175.
|
BEKA L, FULLMER M S, COLSTON S M, et al. Low-level antimicrobials in the medicinal leech select for resistant pathogens that spread to patients[J]. mBio, 2018, 9(4):e01328-18.
|
REEVES A E, LOBSON C, CHALLIS J K, et al. Are aquatic snails reservoirs and vectors of microbes bearing antibiotic resistant genes[J]. Proceedings of Manitoba's undergraduate science engineering research, 2016, 12(2). DOI:10.5203/pmuser.201620560.
|
HOLM R, SÖDERHÄLL K, SÖDERHÄLL I. Accumulation of antibiotics and antibiotic resistance genes in freshwater crayfish-Effects of antibiotics as a pollutant[J]. Fish&shellfish immunology, 2023, 138:108836.
|
YUAN X, LV Z Q, ZHANG Z Y, et al. A review of antibiotics, antibiotic resistant bacteria, and resistance genes in aquaculture:occurrence, contamination, and transmission[J]. Toxics, 2023, 11(5):420.
|
NING K, JI L, ZHANG L, et al. Is rice-crayfish co-culture a better aquaculture model:from the perspective of antibiotic resistome profiles[J]. Environmental pollution, 2022, 292:118450.
|