农田中无脊椎动物对抗生素和抗生素抗性基因环境行为的影响研究进展
Research Progress on Effects of Invertebrates on Fates of Antibiotics and Antibiotic Resistance Genes in Farmland Ecosystem
-
摘要: 抗生素的滥用导致其向农田及其周围环境持续不断地输入,促使抗生素抗性基因(antibiotic resistance genes,ARGs)及其宿主细菌(antibiotic resistance bacteria,ARB)在农田生态系统中富集和扩散,严重威胁农产品质量安全和人体健康。无脊椎动物作为农田生态系统中的重要组成部分,广泛分布于农田土壤及其周围水体环境中,在农田食物网和物质转化中占有重要地位。然而,抗生素、ARGs等抗生素耐药污染物与农田土壤和水生底栖的无脊椎动物间的复杂相互作用仍需全面评估。本文概述了农田系统中的主要无脊椎动物类型的生态功能,重点关注了抗生素耐药污染物对蚯蚓、线虫、跳虫等土壤无脊椎动物以及部分水生无脊椎动物的生态影响,以及引发的抗生素耐药污染物环境行为变化,指出无脊椎动物可通过多途径影响抗生素耐药污染物迁移转化和传播,产生促进抗生素的降解转化、ARGs/ARB削减等正向效应,也可通过肠道蓄积,加速抗生素耐药污染物传播。进一步探讨了相关研究中亟待解决的问题,强调未来需更多将研究对象从模式无脊椎动物拓展到实际农田优势类群中,开展真实环境中的抗生素和ARGs复合污染研究,通过生物群落结构调查方式等证实科学假设,关注农田生态系统中水生无脊椎动物的作用等,以期为农田中无脊椎动物对抗生素耐药污染物的环境行为研究提供理论基础和科学指引。Abstract: The abuse of antibiotics has led to their continuous input into agricultural fields and the surrounding environments, promoting the accumulation and spread of antibiotic resistance genes (ARGs) and antibiotic resistance bacteria (ARB) within farmland ecosystems. This poses a serious threat to agricultural product quality and human health. Invertebrates, as an important component of the agricultural ecosystem, are widely distributed in the soil and aquatic environments, playing a significant role in the food web and material transformation. However, the complex interactions between antibiotic-resistant pollutants, such as antibiotics and ARGs, and invertebrates in agricultural soil and aquatic environments need comprehensive assessment. This article reviews the ecological functions of major invertebrate types within agricultural systems, with a focus on the ecological impact of antibiotic-resistant pollutants on soil invertebrates like earthworms, nematodes, and springtails, as well as some aquatic invertebrates. It highlights the environmental behavior changes induced by those pollutants. Invertebrates can influence the migration, transformation, and dissemination of antibiotic-resistant pollutants through multiple pathways, producing positive effects such as promoting antibiotic degradation and transformation and reducing ARGs/ARB. However, they can also accelerate the spread of antibiotic-resistant pollutants through gut accumulation. The article further explores unresolved issues in related research, emphasizing the need to expand studies from model invertebrates to dominant groups in actual farmland. It calls for studies on the complex pollution of antibiotics and ARGs in real environments, using methods such as community structure surveys to verify scientific hypotheses, and focusing on the role of aquatic invertebrates in farmland ecosystems. These efforts aim to provide a theoretical basis and scientific guidance for understanding the environmental behavior of antibiotic-resistant pollutants regarding invertebrates in farmland.
-
Key words:
- antibiotic /
- invertebrate /
- soil animal /
- agroecosystem /
- antibiotics resistance gene
-
-
UDDIN T M, CHAKRABORTY A J, KHUSRO A, et al. Antibiotic resistance in microbes:history, mechanisms, therapeutic strategies and future prospects[J]. Journal of infection and public health, 2021, 14(12):1750-1766. 朱冬,陈青林,丁晶,等.土壤生态系统中抗生素抗性基因与星球健康:进展与展望[J].中国科学:生命科学, 2019, 49(12):1652-1663. ZHU D, CHEN Q L, DING J, et al. Antibiotic resistance genes in the soil ecosystem and planetary health:progress and prospect[J]. Scientia sinica (vitae), 2019, 49(12):1652-1663.
BERENDONK T U, MANAIA C M, MERLIN C, et al. Tackling antibiotic resistance:the environmental framework[J]. Nature reviews microbiology, 2015, 13(5):310-317. CHEN Q L, AN X L, LI H, et al. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil[J]. Environment international, 2016, 92:1-10. KIM D W, CHA C J. Antibiotic resistome from the One-Health perspective:understanding and controlling antimicrobial resistance transmission[J]. Experimental&molecular medicine, 2021, 53(3):301-309. CHEN Q L, AN X L, LI H, et al. Do manure-borne or indigenous soil microorganisms influence the spread of antibiotic resistance genes in manured soil?[J]. Soil biology and biochemistry, 2017, 114:229-237. CHRISTOU A, AGVERA A, BAYONA J M, et al. The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment:the knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes-A review[J]. Water research, 2017, 123:448-467. LETTEN A D, HALL A R, LEVINE J M. Using ecological coexistence theory to understand antibiotic resistance and microbial competition[J]. Nature ecology&evolution, 2021, 5(4):431-441. 王蕾,姜锦林,董姝楠,等.我国土壤环境基准受试无脊椎动物筛选研究[J].生态毒理学报, 2024, 19(1):91-102. WANG L, JIANG J L, DONG S N, et al. Screening of test invertebrate organisms for deriving soil environmental criteria in China[J]. Asian journal of ecotoxicology, 2024, 19(1):91-102.
BRUNETTI M, MAGOGA G, CUSSIGH A, et al. Soil invertebrate biodiversity and functionality within the intensively farmed areas of the Po Valley[J]. Applied soil ecology, 2024, 197:105326. 孙新,李琪,姚海凤,等.土壤动物与土壤健康[J].土壤学报, 2021, 58(5):1073-1083. SUN X, LI Q, YAO H F, et al. Soil fauna and soil health[J]. Acta pedologica sinica, 2021, 58(5):1073-1083.
郝操, CHEN W,吴东辉.土壤动物肠道微生物多样性研究进展[J].生态学报, 2022, 42(8):3093-3105. HAO C, CHEN T W, WU D H. A review on gut microbial diversity of soil animals[J]. Acta ecologica sinica, 2022, 42(8):3093-3105.
ZHU D, XIANG Q, YANG X R, et al. Trophic transfer of antibiotic resistance genes in a soil detritus food chain[J]. Environmental science&technology, 2019, 53(13):7770-7781. GAO F Z, HE L Y, HE L X, et al. Untreated swine wastes changed antibiotic resistance and microbial community in the soils and impacted abundances of antibiotic resistance genes in the vegetables[J]. Science of the total environment, 2020, 741:140482. EISENBEISG. Biology of soil invertebrates[M]//EISENBEIS G. Intestinal microorganisms of termites and other invertebrates. Berlin:Springer Berlin, 2006:3-53. NAHMANI J, CAPOWIEZ Y, LAVELLE P. Effects of metal pollution on soil macroinvertebrate burrow systems[J]. Biology and fertility of soils, 2005, 42(1):31-39. KOLESNIKOVA A A, TASKAEVA A A, KRIVOLUTSKII D A, et al. Condition of the soil fauna near the epicenter of an underground nuclear explosion in the Northern Urals[J]. Russian journal of ecology, 2005, 36(3):150-157. 徐建英,赵春桃,魏东斌.生物毒性检测在水质安全评价中的应用[J].环境科学, 2014, 35(10):3991-3997. XU J Y, ZHAO C T, WEI D B. Toxicity tests and their application in safety assessment of water quality[J]. Environmental science, 2014, 35(10):3991-3997.
赵然,邢美燕,杨格格,等.蚯蚓生物滤池削减剩余污泥中ARGs和ARB的效果研究[J].环境工程, 2022, 40(12):112-120. ZHAO R, XING M Y, YANG G G, et al. Removal effect of vermifiltration on ARGs and ARB in excess sludge[J]. Environmental engineering, 2022, 40(12):112-120.
代杜铃,姜瑢,荣丽,等.土壤污染生态阈值研究进展[J].生态毒理学报, 2023, 18(6):98-111. DAI D L, JIANG R, RONG L, et al. Advances in ecological thresholds of soil contaminants[J]. Asian journal of ecotoxicology, 2023, 18(6):98-111.
SINGER D, SEPPEY C V W, LENTENDU G, et al. Protist taxonomic and functional diversity in soil, freshwater and marine ecosystems[J]. Environment international, 2021, 146:106262. 邵元虎,张卫信,刘胜杰,等.土壤动物多样性及其生态功能[J].生态学报, 2015, 35(20):6614-6625. SHAO Y H, ZHANG W X, LIU S J, et al. Diversity and function of soil fauna[J]. Acta ecologica sinica, 2015, 35(20):6614-6625.
VAN DEN HOOGEN J, GEISEN S, ROUTH D, et al. Soil nematode abundance and functional group composition at a global scale[J]. Nature, 2019, 572(7768):194-198. IQBAL S, JONESM G K. Nematodes[M]//IQBAL S, JONES M G K. Encyclopedia of applied plant sciences. 2nd Edition. Oxford:Academic Press, 2017:113-119. YEATES G W. Nematodes as soil indicators:functional and biodiversity aspects[J]. Biology and fertility of soils, 2003, 37(4):199-210. BARDGETT R D, VAN DER PUTTEN W H. Belowground biodiversity and ecosystem functioning[J]. Nature, 2014, 515(7528):505-511. BONGERS T. The maturity index:an ecological measure of environmental disturbance based on nematode species composition[J]. Oecologia, 1990, 83(1):14-19. 王东昌,杨振玲,张乃琴,等.我国土壤螨研究现状进展[J].莱阳农学院学报, 2001, 18(1):61-65. WANG D C, YANG Z L, ZHANG N Q, et al. Research status and progress of soil mites in China[J]. Journal of Laiyang Agricultural College, 2001, 18(1):61-65.
连旭,隋玉柱,武海涛,等.秸秆还田对黑土农田土壤甲螨群落结构的影响[J].农业环境科学学报, 2017, 36(1):134-142. LIAN X, SUI Y Z, WU H T, et al. Effect of on-site recycling of straw on community structure of soil Oribatida in black soil farmland[J]. Journal of agro-environment science, 2017, 36(1):134-142.
SINGH A, KARMEGAM N, SINGH G S, et al. Earthworms and vermicompost:an eco-friendly approach for repaying nature's debt[J]. Environmental geochemistry and health, 2020, 42(6):1617-1642. BLOUIN M, HODSON M E, DELGADO E A, et al. A review of earthworm impact on soil function and ecosystem services[J]. European journal of soil science, 2013, 64(2):161-182. GONG X, JIANG Y Y, ZHENG Y, et al. Earthworms differentially modify the microbiome of arable soils varying in residue management[J]. Soil biology and biochemistry, 2018, 121:120-129. AL-MALIKI S, AL-TAEY D K A, AL-MAMMORI H Z. Earthworms and eco-consequences:considerations to soil biological indicators and plant function:a review[J]. Acta ecologica sinica, 2021, 41(6):512-523. DAHMS H U, WON E J, KIM H S, et al. Potential of the small cyclopoid copepod Paracyclopina nana as an invertebrate model for ecotoxicity testing[J]. Aquatic toxicology, 2016, 180:282-294. BANG H S, HAN M S, NA Y E, et al. Biodiversity of fauna and flora in Korean paddy field[C]. Marco:Proceedings of the Marco Symposium "Challenges for Agro-Environmental Research in Monsoon Asia", 2010:441-707. ROSSARO B, MARZIALI L, CORTESI P. The effects of tricyclazole treatment on aquatic invertebrates in a rice paddy field[J]. CLEAN-soil, air, water, 2014, 42(1):29-35. PRASETYO D B, KOJI S, TUNO N. A comparison of aquatic invertebrate diversity between paddy fields under traditional and modern management in Western Japan[J]. Research in agriculture, 2016, 1(1):25. 江云珠,汤圣祥,金田彰二,等.灌溉水质对稻田沟渠水栖无脊椎动物多样性的影响[J].浙江农业学报, 1998, 10(2):71-74. JIANG Y Z, TANG S X, JIN T, et al. Effect of irrigation water quality on biodiversity of invertebrates living in water of rice field and ditch[J]. Acta agriculturae zhejiangensis, 1998, 10(2):71-74.
JOUSSET A. Ecological and evolutive implications of bacterial defences against predators[J]. Environmental microbiology, 2012, 14(8):1830-1843. JOUSSET A, LARA E, WALL L G, et al. Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape protozoan grazing[J]. Applied and environmental microbiology, 2006, 72(11):7083-7090. NGUYEN T B, BONKOWSKI M, DUMACK K, et al. Protistan predation selects for antibiotic resistance in soil bacterial communities[J]. The ISME journal, 2023, 17(12):2182-2189. LI H Z, ZHU D, SUN A Q, et al. Effects of soil protists on the antibiotic resistome under long term fertilization[J]. Environmental pollution, 2022, 307:119516. MCCUDDIN Z P, CARLSON S A, RASMUSSEN M A, et al. Klebsiella to Salmonella gene transfer within rumen protozoa:implications for antibiotic resistance and rumen defaunation[J]. Veterinary microbiology, 2006, 114(3/4):275-284. CAIRNS J, JALASVUORI M, OJALA V, et al. Conjugation is necessary for a bacterial plasmid to survive under protozoan predation[J]. Biology letters, 2016, 12(2):20150953. GUTIÉRREZ C, FERNÁNDEZ C, ESCUER M, et al. Effect of soil properties, heavy metals and emerging contaminants in the soil nematodes diversity[J]. Environmental pollution, 2016, 213:184-194. LONG N P, KANG J S, KIM H M. Caenorhabditis elegans:a model organism in the toxicity assessment of environmental pollutants[J]. Environmental science and pollution research international, 2023, 30(14):39273-39287. ZHENG Y G, YU Z Y, ZHANG J. Multi-generational effects of enrofloxacin on lifespan and reproduction of Caenorhabditis elegans with SKN-1-mediated antioxidant responses and lipid metabolism disturbances[J]. Science of the total environment, 2022, 804:150250. ZHOU J H, SUN X W, JIAO J G, et al. Dynamic changes of bacterial community under the influence of bacterial-feeding nematodes grazing in prometryne contaminated soil[J]. Applied soil ecology, 2013, 64:70-76. KOPPEL N, MAINI REKDAL V, BALSKUS E P. Chemical transformation of xenobiotics by the human gut microbiota[J]. Science, 2017, 356(6344):eaag2770. BHATTACHARYA S S, YADAV J S. Microbial P450 enzymes in bioremediation and drug discovery:emerging potentials and challenges[J]. Current protein&peptide science, 2018, 19(1):75-86. WANG X, ZHANG Z H, YUAN K K, et al. Cytochrome P450-mediated co-metabolism of fluoroquinolones by Haematococcus lacustris for simultaneously promoting astaxanthin and lipid accumulation[J]. Chemical engineering journal, 2023, 465:142770. MENZEL R, BOGAERT T, ACHAZI R. A systematic gene expression screen of Caenorhabditis elegans cytochrome P450 genes reveals CYP35 as strongly xenobiotic inducible[J]. Archives of biochemistry and biophysics, 2001, 395(2):158-168. FÉLIX M A, BRAENDLE C. The natural history of Caenorhabditis elegans[J]. Current biology, 2010, 20(22):R965-R969. KHAN F, JAIN S, OLOKETUYI S F. Bacteria and bacterial products:Foe and friends to Caenorhabditis elegans[J]. Microbiological research, 2018, 215:102-113. BROOKS K K, LIANG B, WATTS J L. The influence of bacterial diet on fat storage in C. elegans[J]. PLoS One, 2009, 4(10):e7545. PORTAL-CELHAY C, BLASER M J. Competition and resilience between founder and introduced bacteria in the Caenorhabditis elegans gut[J]. Infection and immunity, 2012, 80(3):1288-1299. ZHOU G W, ZHENG F, FAN X T, et al. Host age increased conjugal plasmid transfer in gut microbiota of the soil invertebrate Caenorhabditis elegans[J]. Journal of hazardous materials, 2022, 424:127525. CHAN S Y, LIU S Y, WU R B, et al. Simultaneous dissemination of nanoplastics and antibiotic resistance by nematode couriers[J]. Environmental science&technology, 2023, 57(23):8719-8727. TOPALOVIĆ O, HEUER H. Plant-nematode interactions assisted by microbes in the rhizosphere[J]. Current issues in molecular biology, 2019, 30:75-88. DONG W H, LIU Y, HOU J, et al. Nematodes degrade extracellular antibiotic resistance genes by secreting DNase Ⅱ encoded by the nuc-1 gene[J]. Environmental science&technology, 2023, 57(32):12042-12052. ZHENG F, ZHU D, GILES M, et al. Mineral and organic fertilization alters the microbiome of a soil nematode Dorylaimus stagnalis and its resistome[J]. Science of the total environment, 2019, 680:70-78. ZHENG F, BI Q F, GILES M, et al. Fates of antibiotic resistance genes in the gut microbiome from different soil fauna under long-term fertilization[J]. Environmental science&technology, 2021, 55(1):423-432. YANG L H, WANG X T, MA J, et al. Nanoscale polystyrene intensified the microbiome perturbation and antibiotic resistance genes enrichment in soil and Enchytraeus crypticus caused by tetracycline[J]. Applied soil ecology, 2022, 174:104426. ZHU D, CHEN Q L, AN X L, et al. Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition[J]. Soil biology and biochemistry, 2018, 116:302-310. WANG Y F, QIAO M, ZHU D, et al. Antibiotic resistance in the collembolan gut microbiome accelerated by the nonantibiotic drug carbamazepine[J]. Environmental science&technology, 2020, 54(17):10754-10762. ZHU D, AN X L, CHEN Q L, et al. Antibiotics disturb the microbiome and increase the incidence of resistance genes in the gut of a common soil collembolan[J]. Environmental science&technology, 2018, 52(5):3081-3090. ZHANG Q, ZHU D, DING J, et al. Species-specific response of the soil collembolan gut microbiome and resistome to soil oxytetracycline pollution[J]. Science of the total environment, 2019, 668:1183-1190. 朱冬.典型土壤动物微生物组中抗生素抗性基因的环境行为[D].北京:中国科学院大学, 2019:144-147. ZHU D. Environmental behavior of antibiotic resistance genes in a typical soil animal microbiome[D]. Beijing:University of Chinese Academy of Sciences, 2019:144 -147.
ZHU D, WANG H T, ZHENG F, et al. Collembolans accelerate the dispersal of antibiotic resistance genes in the soil ecosystem[J]. Soil ecology letters, 2019, 1(1):14-21. SIMBANEGAVI T T, MAKUVARA Z, MARUMURE J, et al. Are earthworms the victim, facilitator or antidote of antibiotics and antibiotic resistance at the soil-animal-human interface?A One-Health perspective[J]. Science of the total environment, 2024, 945:173882. LI H, LUO Q P, PU Q, et al. Earthworms reduce the dissemination potential of antibiotic resistance genes by changing bacterial co-occurrence patterns in soil[J]. Journal of hazardous materials, 2022, 426:128127. YANG S D, LU C X, QIN C, et al. Mitigation effects and microbial mechanism of two ecological earthworms on the uptake of chlortetracycline and antibiotic resistance genes in lettuce[J]. Science of the total environment, 2023, 885:163907. ASHWORTH D J, IBEKWE A M, MEN Y J, et al. Dissemination of antibiotics through the wastewater-soil-plant-earthworm continuum[J]. Science of the total environment, 2023, 858:159841. EL-SHIMY N, ASSAYED M F, ABDEL K, et al. Bioaccumulations of oxytetracycline and heavy metal on the earthworm Aporrectodea longa[J]. Assiut University journal of multidisciplinary scientific research, 2018, 47(2):19-34. PU Q, WANG H T, PAN T, et al. Enhanced removal of ciprofloxacin and reduction of antibiotic resistance genes by earthworm Metaphire vulgaris in soil[J]. Science of the total environment, 2020, 742:140409. ZHANG Y, SONG K, ZHANG J Q, et al. Removal of sulfamethoxazole and antibiotic resistance genes in paddy soil by earthworms (Pheretima guillelmi):intestinal detoxification and stimulation of indigenous soil bacteria[J]. Science of the total environment, 2022, 851:158075. CAO J, WANG C, DOU Z X, et al. Hyphospheric impacts of earthworms and arbuscular mycorrhizal fungus on soil bacterial community to promote oxytetracycline degradation[J]. Journal of hazardous materials, 2018, 341:346-354. WANG C R, RONG H, LIU H T, et al. Detoxification mechanisms, defense responses, and toxicity threshold in the earthworm Eisenia foetida exposed to ciprofloxacin-polluted soils[J]. Science of the total environment, 2018, 612:442-449. YANG S D, ZHAO L X, CHANG X P, et al. Removal of chlortetracycline and antibiotic resistance genes in soil by earthworms (epigeic Eisenia fetida and endogeic Metaphire guillelmi)[J]. Science of the total environment, 2021, 781:146679. GAO X, ZHANG H, XU L H, et al. Impact of earthworms on antibiotic resistance genes removal in ampicillin-contaminated soil through bacterial community alteration[J]. Journal of environmental quality, 2024, 53(4):521-534. ZHENG X X, CHAO H Z, WU Y L, et al. Contrasted effects of Metaphire guillelmi on tetracycline diffusion and dissipation in soil[J]. Journal of environmental management, 2022, 310:114776. DENG S G, LI P Y, WU Y Z, et al. Eco-risk management of tylosin fermentation residues using vermicomposting[J]. Journal of environmental management, 2022, 303:114126. YIN B Y, ZHANG M R, ZENG Y X, et al. The changes of antioxidant system and intestinal bacteria in earthworms (Metaphire guillelmi) on the enhanced degradation of tetracycline[J]. Chemosphere, 2021, 265:129097. CHAO H Z, ZHENG X X, XIA R, et al. Incubation trial indicated the earthworm intestinal bacteria as promising biodigestor for mitigating tetracycline resistance risk in anthropogenic disturbed forest soil[J]. Science of the total environment, 2021, 798:149337. HUANG K, CHEN J Y, GUAN M X, et al. Effects of biochars on the fate of antibiotics and their resistance genes during vermicomposting of dewatered sludge[J]. Journal of hazardous materials, 2020, 397:122767. BAO Y Y, LI Y X, PAN C R. Effects of the removal of soil extractable oxytetracycline fractions on its bioaccumulation in earthworm and horsebean[J]. Water, air,&soil pollution, 2018, 229(3):79. CAO J, JI D, WANG C, et al. Interaction between earthworms and arbuscular mycorrhizal fungi on the degradation of oxytetracycline in soils[J]. Soil biology and biochemistry, 2015, 90:283-292. RAVINDRAN B, MNKENI P N S. Identification and fate of antibiotic residue degradation during composting and vermicomposting of chicken manure[J]. International journal of environmental science and technology, 2017, 14(2):263-270. LIU P, SUN M H, XIA S Q, et al. Earthworms and lactic acid bacteria (LAB) cooperate to promote the biodegradation of tetracycline residues in livestock manure[J]. Waste management, 2024, 186:166-175. LI W L, LI S S, ZHONG J, et al. A novel antimicrobial peptide from skin secretions of the earthworm, Pheretima guillelmi(Michaelsen)[J]. Peptides, 2011, 32(6):1146-1150. CHAO H Z, KONG L Y, ZHANG H X, et al. Metaphire guillelmi gut as hospitable micro-environment for the potential transmission of antibiotic resistance genes[J]. Science of the total environment, 2019, 669:353-361. BHATTACHARJEE A S, PHAN D, ZHENG C J, et al. Dissemination of antibiotic resistance genes through soil-plant-earthworm continuum in the food production environment[J]. Environment international, 2024, 183:108374. 徐俊杰.蚯蚓肠道消化对污泥中抗生素抗性基因水平转移的影响[D].兰州:兰州交通大学, 2023:45-59. MAKUVARA Z, MARUMURE J, KARIDZAGUNDI R, et al. Vermicompost:a potential reservoir of antimicrobial resistant microbes (ARMs) and genes (ARGs)[M]//Hupenyu A M, Lydia N H, Pearson N S, et al. Vermicomposting for sustainable food systems in Africa. Springer. 2023:307-333. ZHU D, DELGADO-BAQUERIZO M, SU J Q, et al. Deciphering potential roles of earthworms in mitigation of antibiotic resistance in the soils from diverse ecosystems[J]. Environmental science&technology, 2021, 55(11):7445-7455. LI Z H, YUAN L, SHAO W, et al. Evaluating the interaction of soil microorganisms and gut of soil fauna on the fate and spread of antibiotic resistance genes in digested sludge-amended soil ecosystem[J]. Journal of hazardous materials, 2021, 420:126672. YANG J, LIU J, XING M Y, et al. Effect of earthworms on the biochemical characterization of biofilms in vermifiltration treatment of excess sludge[J]. Bioresource technology, 2013, 143:10-17. WU Y Z, DENG S G, WANG X H, et al. Discovery and mechanism of action of a novel antimicrobial peptide from an earthworm[J]. Microbiology spectrum, 2023, 11(1):e0320622. HUANG K, XIA H, ZHANG Y Y, et al. Elimination of antibiotic resistance genes and human pathogenic bacteria by earthworms during vermicomposting of dewatered sludge by metagenomic analysis[J]. Bioresource technology, 2020, 297:122451. CUI G Y, AHMAD BHAT S, LI W J, et al. Gut digestion of earthworms significantly attenuates cell-free and-associated antibiotic resistance genes in excess activated sludge by affecting bacterial profiles[J]. Science of the total environment, 2019, 691:644-653. 何文程.蚯蚓对不同土壤-植物系统中抗生素及其抗性基因影响机制研究[D].苏州:苏州科技大学, 2022:36-50. LI Z J, CHEN C, ZHANG K Q, et al. Response of antibiotic resistance genes and related microorganisms to arsenic during vermicomposting of cow dung[J]. International journal of environmental research and public health, 2022, 19(21):14475. HUANG K, XIA H, WU Y, et al. Effects of earthworms on the fate of tetracycline and fluoroquinolone resistance genes of sewage sludge during vermicomposting[J]. Bioresource technology, 2018, 259:32-39. YANG F X, WANG X L, TIAN X L, et al. Cow manure simultaneously reshaped antibiotic and metal resistome in the earthworm gut tract by metagenomic analysis[J]. Science of the total environment, 2023, 856:159010. CUI G Y, LI F S, LI S L, et al. Changes of quinolone resistance genes and their relations with microbial profiles during vermicomposting of municipal excess sludge[J]. Science of the total environment, 2018, 644:494-502. TIAN X L, HAN B J, LIANG J F, et al. Tracking antibiotic resistance genes (ARGs) during earthworm conversion of cow dung in Northern China[J]. Ecotoxicology and environmental safety, 2021, 222:112538. XIA H, ZHU L C, DING J G, et al. Earthworm gut digestion drives the transfer behavior of antibiotic resistance genes in layers of extracellular polymeric substances during vermicomposting of dewatered sludge[J]. Environmental research, 2024, 259:119489. CHEN J, XIA H, HUANG K, et al. Earthworms restructure the distribution of extracellular antibiotics resistance genes of sludge by modifying the structure of extracellular polymeric substances during vermicomposting[J]. Journal of hazardous materials, 2023, 452:131315. GUO H A, LI Z, SUN X J, et al. Impact of earthworms on suppressing dissemination of antibiotic resistance genes during vermicomposting treatment of excess sludge[J]. Bioresource technology, 2024, 406:130991. XING M Y, ZHAO R, YANG G G, et al. Elimination of antibiotic-resistant bacteria and resistance genes by earthworms during vermifiltration treatment of excess sludge[J]. Environmental science and pollution research international, 2024, 31(5):7853-7871. DUAN Z H, ZHU Y C, XIA H, et al. A novel strategy for eliminating antibiotic resistance genes during fertilization of dewatered sludge by earthworms:vermicomposting practice using Chinese herbal residues derived from Lianhua Qingwen as a bulking material[J]. Journal of environmental management, 2024, 349:119444. HAO X X, ZHANG W J, ZHAO L B, et al. Bacillus subtilis reduces antibiotic resistance genes of animal sludge in vermicomposting by improving heat stress tolerance of Eisenia foetida and bacterial community adjustment[J]. Environmental research, 2023, 219:115088. YUKGEHNAISH K, KUMAR P, SIVACHANDRAN P, et al. Gut microbiota metagenomics in aquaculture:factors influencing gut microbiome and its physiological role in fish[J]. Reviews in aquaculture, 2020, 12(3):1903-1927. JIA J, GOMES-SILVA G, PLATH M, et al. Shifts in bacterial communities and antibiotic resistance genes in surface water and gut microbiota of guppies (Poecilia reticulata) in the upper Rio Uberabinha, Brazil[J]. Ecotoxicology and environmental safety, 2021, 211:111955. AGERSØ Y, BRUUN M S, DALSGAARD I, et al. The tetracycline resistance gene Tet (E) is frequently occurring and present on large horizontally transferable plasmids in Aeromonas spp. from fish farms[J]. Aquaculture, 2007, 266(1/2/3/4):47-52. DING C S, MA J, JIANG W X, et al. Chironomidae larvae:a neglected enricher of antibiotic resistance genes in the food chain of freshwater environments[J]. Environmental pollution, 2021, 285:117486. ECKERT E M, DI CESARE A, STENZEL B, et al. Daphnia as a refuge for an antibiotic resistance gene in an experimental freshwater community[J]. Science of the total environment, 2016, 571:77-81. OLANREWAJU T O, MCCARRON M, DOOLEY J S G, et al. Transfer of antibiotic resistance genes between Enterococcus faecalis strains in filter feeding zooplankton Daphnia magna and Daphnia pulex[J]. Science of the total environment, 2019, 659:1168-1175. BEKA L, FULLMER M S, COLSTON S M, et al. Low-level antimicrobials in the medicinal leech select for resistant pathogens that spread to patients[J]. mBio, 2018, 9(4):e01328-18. REEVES A E, LOBSON C, CHALLIS J K, et al. Are aquatic snails reservoirs and vectors of microbes bearing antibiotic resistant genes[J]. Proceedings of Manitoba's undergraduate science engineering research, 2016, 12(2). DOI:10.5203/pmuser.201620560. HOLM R, SÖDERHÄLL K, SÖDERHÄLL I. Accumulation of antibiotics and antibiotic resistance genes in freshwater crayfish-Effects of antibiotics as a pollutant[J]. Fish&shellfish immunology, 2023, 138:108836. YUAN X, LV Z Q, ZHANG Z Y, et al. A review of antibiotics, antibiotic resistant bacteria, and resistance genes in aquaculture:occurrence, contamination, and transmission[J]. Toxics, 2023, 11(5):420. NING K, JI L, ZHANG L, et al. Is rice-crayfish co-culture a better aquaculture model:from the perspective of antibiotic resistome profiles[J]. Environmental pollution, 2022, 292:118450. -

计量
- 文章访问数: 387
- HTML全文浏览数: 387
- PDF下载数: 144
- 施引文献: 0