Thompson R C, Olsen Y, Mitchell R P, et al. Lost at sea:Where is all the plastic?[J]. Science, 2004, 304(5672):838
|
Wright S L, Kelly F J. Plastic and human health:A micro issue?[J]. Environmental Science & Technology, 2017, 51(12):6634-6647
|
Rillig M C. Microplastic in terrestrial ecosystems and the soil?[J]. Environmental Science & Technology, 2012, 46(12):6453-6454
|
Andrady A L. Microplastics in the marine environment[J]. Marine Pollution Bulletin, 2011, 62(8):1596-1605
|
Hanna S K, Montoro Bustos A R, Peterson A W, et al. Agglomeration of Escherichia coli with positively charged nanoparticles can lead to artifacts in a standard Caenorhabditis elegans toxicity assay[J]. Environmental Science & Technology, 2018, 52(10):5968-5978
|
Kim H M, Lee D K, Long N P, et al. Uptake of nanopolystyrene particles induces distinct metabolic profiles and toxic effects in Caenorhabditis elegans[J]. Environmental Pollution, 2019, 246:578-586
|
Setälä O, Fleming-Lehtinen V, Lehtiniemi M. Ingestion and transfer of microplastics in the planktonic food web[J]. Environmental Pollution, 2014, 185:77-83
|
Farrell P, Nelson K. Trophic level transfer of microplastic:Mytilus edulis (L.) to Carcinus maenas (L.)[J]. Environmental Pollution, 2013, 177:1-3
|
Chen Q Q, Gundlach M, Yang S Y, et al. Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity[J]. Science of the Total Environment, 2017, 584-585:1022-1031
|
Gambardella C, Morgana S, Ferrando S, et al. Effects of polystyrene microbeads in marine planktonic crustaceans[J]. Ecotoxicology and Environmental Safety, 2017, 145:250-257
|
Fueser H, Mueller M T, Traunspurger W. Rapid ingestion and egestion of spherical microplastics by bacteria-feeding nematodes[J]. Chemosphere, 2020, 261:128162
|
Liu Q Y, Chen C X, Li M T, et al. Neurodevelopmental toxicity of polystyrene nanoplastics in Caenorhabditis elegans and the regulating effect of presenilin[J]. ACS Omega, 2020, 5(51):33170-33177
|
Wan Z Q, Wang C Y, Zhou J J, et al. Effects of polystyrene microplastics on the composition of the microbiome and metabolism in larval zebrafish[J]. Chemosphere, 2019, 217:646-658
|
Al-Sid-Cheikh M, Rowland S J, Stevenson K, et al. Uptake, whole-body distribution, and depuration of nanoplastics by the scallop Pecten maximus at environmentally realistic concentrations[J]. Environmental Science & Technology, 2018, 52(24):14480-14486
|
Watts J L, Ristow M. Lipid and carbohydrate metabolism in Caenorhabditis elegans[J]. Genetics, 2017, 207(2):413-446
|
Holt S J, Riddle D L. SAGE surveys C. elegans carbohydrate metabolism:Evidence for an anaerobic shift in the long-lived dauer larva[J]. Mechanisms of Ageing and Development, 2003, 124(7):779-800
|
Depuydt G, Xie F, Petyuk V A, et al. LC-MS proteomics analysis of the insulin/IGF-1-deficient Caenorhabditis elegans daf-2(E1370) mutant reveals extensive restructuring of intermediary metabolism[J]. Journal of Proteome Research, 2014, 13(4):1938-1956
|
Krabbendam I E, Honrath B, Dilberger B, et al. SK channel-mediated metabolic escape to glycolysis inhibits ferroptosis and supports stress resistance in C. elegans[J]. Cell Death & Disease, 2020, 11(4):263
|
Gebauer J, Gentsch C, Mansfeld J, et al. A genome-scale database and reconstruction of Caenorhabditis elegans metabolism[J]. Cell Systems, 2016, 2(5):312-322
|
Hamed M, Soliman H A M, Osman A G M, et al. Assessment the effect of exposure to microplastics in Nile tilapia (Oreochromis niloticus) early juvenile:Ⅰ. blood biomarkers[J]. Chemosphere, 2019, 228:345-350
|
Zhao Y, Bao Z W, Wan Z Q, et al. Polystyrene microplastic exposure disturbs hepatic glycolipid metabolism at the physiological, biochemical, and transcriptomic levels in adult zebrafish[J]. Science of the Total Environment, 2020, 710:136279
|
Leung M C, Williams P L, Benedetto A, et al. Caenorhabditis elegans:An emerging model in biomedical and environmental toxicology[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2008, 106(1):5-28
|
Lee S, Kim Y, Choi J. Effect of soil microbial feeding on gut microbiome and cadmium toxicity in Caenorhabditis elegans[J]. Ecotoxicology and Environmental Safety, 2020, 187:109777
|
Yang Y H, Shao H M, Wu Q L, et al. Lipid metabolic response to polystyrene particles in nematode Caenorhabditis elegans[J]. Environmental Pollution, 2020, 256:113439
|
Xiao T T, Cai C Z, Peng L P, et al. Fabrication and characteristics of self-assembly nano-polystyrene films by laser induced CVD[J]. Applied Surface Science, 2013, 282:652-655
|
Shyu Y J, Hiatt S M, Duren H M, et al. Visualization of protein interactions in living Caenorhabditis elegans using bimolecular fluorescence complementation analysis[J]. Nature Protocols, 2008, 3(4):588-596
|
Jin Y X, Lu L, Tu W Q, et al. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice[J]. The Science of the Total Environment, 2019, 649:308-317
|
Lu Y F, Zhang Y, Deng Y F, et al. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver[J]. Environmental Science & Technology, 2016, 50(7):4054-4060
|
Kashiwada S. Distribution of nanoparticles in the see-through medaka (Oryzias latipes)[J]. Environmental Health Perspectives, 2006, 114(11):1697-1702
|
Sussarellu R, Suquet M, Thomas Y, et al. Oyster reproduction is affected by exposure to polystyrene microplastics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(9):2430-2435
|
Yin L Y, Chen B J, Xia B, et al. Polystyrene microplastics alter the behavior, energy reserve and nutritional composition of marine jacopever (Sebastes schlegelii)[J]. Journal of Hazardous Materials, 2018, 360:97-105
|
Gusarov I, Pani B, Gautier L, et al. Glycogen controls Caenorhabditis elegans lifespan and resistance to oxidative stress[J]. Nature Communications, 2017, 8:15868
|
Frazier H N Ⅲ, Roth M B. Adaptive sugar provisioning controls survival of C. elegans embryos in adverse environments[J]. Current Biology, 2009, 19(10):859-863
|
Song S J, Han Y, Zhang Y, et al. Protective role of citric acid against oxidative stress induced by heavy metals in Caenorhabditis elegans[J]. Environmental Science and Pollution Research International, 2019, 26(36):36820-36831
|