纳米聚苯乙烯微塑料暴露对秀丽隐杆线虫葡萄糖代谢的影响

徐允, 胡坤禹, 许安, 陈少鹏, 吴李君. 纳米聚苯乙烯微塑料暴露对秀丽隐杆线虫葡萄糖代谢的影响[J]. 生态毒理学报, 2022, 17(5): 443-454. doi: 10.7524/AJE.1673-5897.20210304002
引用本文: 徐允, 胡坤禹, 许安, 陈少鹏, 吴李君. 纳米聚苯乙烯微塑料暴露对秀丽隐杆线虫葡萄糖代谢的影响[J]. 生态毒理学报, 2022, 17(5): 443-454. doi: 10.7524/AJE.1673-5897.20210304002
Xu Yun, Hu Kunyu, Xu An, Chen Shaopeng, Wu Lijun. Effects of Exposure to Nanopolystyrene Microplastics on Glucose Metabolism in Caenorhabditis elegans[J]. Asian journal of ecotoxicology, 2022, 17(5): 443-454. doi: 10.7524/AJE.1673-5897.20210304002
Citation: Xu Yun, Hu Kunyu, Xu An, Chen Shaopeng, Wu Lijun. Effects of Exposure to Nanopolystyrene Microplastics on Glucose Metabolism in Caenorhabditis elegans[J]. Asian journal of ecotoxicology, 2022, 17(5): 443-454. doi: 10.7524/AJE.1673-5897.20210304002

纳米聚苯乙烯微塑料暴露对秀丽隐杆线虫葡萄糖代谢的影响

    作者简介: 徐允(1995-),男,硕士研究生,研究方向为环境毒理学,E-mail:3096453165@qq.com
    通讯作者: 吴李君, E-mail: ljw@ipp.ac.cn
  • 基金项目:

    合肥研究院“十三五”规划重点支持项目(KP-2017-05);国家重点研究与开发计划课题(2020YFC1808204);安徽省重点研究与开发计划项目(202004i07020016)

  • 中图分类号: X171.5

Effects of Exposure to Nanopolystyrene Microplastics on Glucose Metabolism in Caenorhabditis elegans

    Corresponding author: Wu Lijun, ljw@ipp.ac.cn
  • Fund Project:
  • 摘要: 纳米聚苯乙烯(nanoPS),作为一种人造微塑料,正持续不断地进入到环境中,对人类健康以及生态安全都是一个潜在威胁。已有结果表明,nanoPS暴露会导致轮虫、水蚤以及斑马鱼等运动能力下降、氧化损伤、肠道损伤以及代谢紊乱。葡萄糖代谢是生命活动最重要的能量供应之一,然而,关于nanoPS长期暴露对于葡萄糖代谢影响的了解还不够全面和深入。本研究中,使用低浓度nanoPS (0~100 μg·L-1)连续暴露模式生物秀丽隐杆线虫(Caenorhabditis elegans)5 d后观察对其糖代谢的影响。液体暴露5 d后,10 μg·L-1和100 μg·L-1处理组线虫确实摄入了一定量的微塑料。同时,使用高浓度(10 mg·L-1)绿色荧光nanoPS急性暴露线虫24 h,发现线虫体内摄入的微塑料主要分布在肠道的尾部。此外,短暂恢复12 h后,线虫可以将其排出。nanoPS液体暴露5 d后,10 μg·L-1和100 μg·L-1处理组线虫的食物摄入均显著减少,同时100 μg·L-1处理组线虫体内葡萄糖含量降低了21.8%。此外,与葡萄糖相关的一些代谢过程也受到了不同程度的影响。在这其中,100 μg·L-1处理组线虫体内糖原含量升高了2.5倍,而海藻糖含量呈剂量依赖降低,虽然变化不显著。至于葡萄糖分解代谢,液体暴露5 d后,100 μg·L-1处理组线虫体内丙酮酸含量降低了55.3%,同时一些与糖酵解相关基因包括gpd-2pyk-1pyk-2pfk-1.1的表达也都明显减弱。而柠檬酸和ATP含量在暴露后却都呈剂量依赖升高。在这其中,100 μg·L-1处理组线虫体内柠檬酸含量升高了85.9%,而10 μg·L-1和100 μg·L-1处理组线虫体内ATP含量分别升高了39.3%和51.3%。综上所述,结果表明,nanoPS液体连续暴露后,线虫体内不论是葡萄糖合成代谢还是分解代谢均受到了不同程度的影响,且这些影响可能与暴露过程中线虫对nanoPS的摄入及暴露后线虫的摄食减少相关。
  • 加载中
  • Thompson R C, Olsen Y, Mitchell R P, et al. Lost at sea:Where is all the plastic?[J]. Science, 2004, 304(5672):838
    Wright S L, Kelly F J. Plastic and human health:A micro issue?[J]. Environmental Science & Technology, 2017, 51(12):6634-6647
    Rillig M C. Microplastic in terrestrial ecosystems and the soil?[J]. Environmental Science & Technology, 2012, 46(12):6453-6454
    Andrady A L. Microplastics in the marine environment[J]. Marine Pollution Bulletin, 2011, 62(8):1596-1605
    Hanna S K, Montoro Bustos A R, Peterson A W, et al. Agglomeration of Escherichia coli with positively charged nanoparticles can lead to artifacts in a standard Caenorhabditis elegans toxicity assay[J]. Environmental Science & Technology, 2018, 52(10):5968-5978
    Kim H M, Lee D K, Long N P, et al. Uptake of nanopolystyrene particles induces distinct metabolic profiles and toxic effects in Caenorhabditis elegans[J]. Environmental Pollution, 2019, 246:578-586
    Setälä O, Fleming-Lehtinen V, Lehtiniemi M. Ingestion and transfer of microplastics in the planktonic food web[J]. Environmental Pollution, 2014, 185:77-83
    Farrell P, Nelson K. Trophic level transfer of microplastic:Mytilus edulis (L.) to Carcinus maenas (L.)[J]. Environmental Pollution, 2013, 177:1-3
    Chen Q Q, Gundlach M, Yang S Y, et al. Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity[J]. Science of the Total Environment, 2017, 584-585:1022-1031
    Gambardella C, Morgana S, Ferrando S, et al. Effects of polystyrene microbeads in marine planktonic crustaceans[J]. Ecotoxicology and Environmental Safety, 2017, 145:250-257
    Fueser H, Mueller M T, Traunspurger W. Rapid ingestion and egestion of spherical microplastics by bacteria-feeding nematodes[J]. Chemosphere, 2020, 261:128162
    Liu Q Y, Chen C X, Li M T, et al. Neurodevelopmental toxicity of polystyrene nanoplastics in Caenorhabditis elegans and the regulating effect of presenilin[J]. ACS Omega, 2020, 5(51):33170-33177
    Wan Z Q, Wang C Y, Zhou J J, et al. Effects of polystyrene microplastics on the composition of the microbiome and metabolism in larval zebrafish[J]. Chemosphere, 2019, 217:646-658
    Al-Sid-Cheikh M, Rowland S J, Stevenson K, et al. Uptake, whole-body distribution, and depuration of nanoplastics by the scallop Pecten maximus at environmentally realistic concentrations[J]. Environmental Science & Technology, 2018, 52(24):14480-14486
    Watts J L, Ristow M. Lipid and carbohydrate metabolism in Caenorhabditis elegans[J]. Genetics, 2017, 207(2):413-446
    Holt S J, Riddle D L. SAGE surveys C. elegans carbohydrate metabolism:Evidence for an anaerobic shift in the long-lived dauer larva[J]. Mechanisms of Ageing and Development, 2003, 124(7):779-800
    Depuydt G, Xie F, Petyuk V A, et al. LC-MS proteomics analysis of the insulin/IGF-1-deficient Caenorhabditis elegans daf-2(E1370) mutant reveals extensive restructuring of intermediary metabolism[J]. Journal of Proteome Research, 2014, 13(4):1938-1956
    Krabbendam I E, Honrath B, Dilberger B, et al. SK channel-mediated metabolic escape to glycolysis inhibits ferroptosis and supports stress resistance in C. elegans[J]. Cell Death & Disease, 2020, 11(4):263
    Gebauer J, Gentsch C, Mansfeld J, et al. A genome-scale database and reconstruction of Caenorhabditis elegans metabolism[J]. Cell Systems, 2016, 2(5):312-322
    Hamed M, Soliman H A M, Osman A G M, et al. Assessment the effect of exposure to microplastics in Nile tilapia (Oreochromis niloticus) early juvenile:Ⅰ. blood biomarkers[J]. Chemosphere, 2019, 228:345-350
    Zhao Y, Bao Z W, Wan Z Q, et al. Polystyrene microplastic exposure disturbs hepatic glycolipid metabolism at the physiological, biochemical, and transcriptomic levels in adult zebrafish[J]. Science of the Total Environment, 2020, 710:136279
    Leung M C, Williams P L, Benedetto A, et al. Caenorhabditis elegans:An emerging model in biomedical and environmental toxicology[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2008, 106(1):5-28
    Lee S, Kim Y, Choi J. Effect of soil microbial feeding on gut microbiome and cadmium toxicity in Caenorhabditis elegans[J]. Ecotoxicology and Environmental Safety, 2020, 187:109777
    Yang Y H, Shao H M, Wu Q L, et al. Lipid metabolic response to polystyrene particles in nematode Caenorhabditis elegans[J]. Environmental Pollution, 2020, 256:113439
    Xiao T T, Cai C Z, Peng L P, et al. Fabrication and characteristics of self-assembly nano-polystyrene films by laser induced CVD[J]. Applied Surface Science, 2013, 282:652-655
    Shyu Y J, Hiatt S M, Duren H M, et al. Visualization of protein interactions in living Caenorhabditis elegans using bimolecular fluorescence complementation analysis[J]. Nature Protocols, 2008, 3(4):588-596
    Jin Y X, Lu L, Tu W Q, et al. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice[J]. The Science of the Total Environment, 2019, 649:308-317
    Lu Y F, Zhang Y, Deng Y F, et al. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver[J]. Environmental Science & Technology, 2016, 50(7):4054-4060
    Kashiwada S. Distribution of nanoparticles in the see-through medaka (Oryzias latipes)[J]. Environmental Health Perspectives, 2006, 114(11):1697-1702
    Sussarellu R, Suquet M, Thomas Y, et al. Oyster reproduction is affected by exposure to polystyrene microplastics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(9):2430-2435
    Yin L Y, Chen B J, Xia B, et al. Polystyrene microplastics alter the behavior, energy reserve and nutritional composition of marine jacopever (Sebastes schlegelii)[J]. Journal of Hazardous Materials, 2018, 360:97-105
    Gusarov I, Pani B, Gautier L, et al. Glycogen controls Caenorhabditis elegans lifespan and resistance to oxidative stress[J]. Nature Communications, 2017, 8:15868
    Frazier H N Ⅲ, Roth M B. Adaptive sugar provisioning controls survival of C. elegans embryos in adverse environments[J]. Current Biology, 2009, 19(10):859-863
    Song S J, Han Y, Zhang Y, et al. Protective role of citric acid against oxidative stress induced by heavy metals in Caenorhabditis elegans[J]. Environmental Science and Pollution Research International, 2019, 26(36):36820-36831
  • 加载中
计量
  • 文章访问数:  2377
  • HTML全文浏览数:  2377
  • PDF下载数:  103
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-03-04
徐允, 胡坤禹, 许安, 陈少鹏, 吴李君. 纳米聚苯乙烯微塑料暴露对秀丽隐杆线虫葡萄糖代谢的影响[J]. 生态毒理学报, 2022, 17(5): 443-454. doi: 10.7524/AJE.1673-5897.20210304002
引用本文: 徐允, 胡坤禹, 许安, 陈少鹏, 吴李君. 纳米聚苯乙烯微塑料暴露对秀丽隐杆线虫葡萄糖代谢的影响[J]. 生态毒理学报, 2022, 17(5): 443-454. doi: 10.7524/AJE.1673-5897.20210304002
Xu Yun, Hu Kunyu, Xu An, Chen Shaopeng, Wu Lijun. Effects of Exposure to Nanopolystyrene Microplastics on Glucose Metabolism in Caenorhabditis elegans[J]. Asian journal of ecotoxicology, 2022, 17(5): 443-454. doi: 10.7524/AJE.1673-5897.20210304002
Citation: Xu Yun, Hu Kunyu, Xu An, Chen Shaopeng, Wu Lijun. Effects of Exposure to Nanopolystyrene Microplastics on Glucose Metabolism in Caenorhabditis elegans[J]. Asian journal of ecotoxicology, 2022, 17(5): 443-454. doi: 10.7524/AJE.1673-5897.20210304002

纳米聚苯乙烯微塑料暴露对秀丽隐杆线虫葡萄糖代谢的影响

    通讯作者: 吴李君, E-mail: ljw@ipp.ac.cn
    作者简介: 徐允(1995-),男,硕士研究生,研究方向为环境毒理学,E-mail:3096453165@qq.com
  • 1. 中国科学院合肥物质科学研究院强磁场与离子束物理生物学重点实验室, 合肥 230031;
  • 2. 中国科学技术大学, 合肥 230026;
  • 3. 安徽大学物质科学与信息技术研究院, 合肥 230601
基金项目:

合肥研究院“十三五”规划重点支持项目(KP-2017-05);国家重点研究与开发计划课题(2020YFC1808204);安徽省重点研究与开发计划项目(202004i07020016)

摘要: 纳米聚苯乙烯(nanoPS),作为一种人造微塑料,正持续不断地进入到环境中,对人类健康以及生态安全都是一个潜在威胁。已有结果表明,nanoPS暴露会导致轮虫、水蚤以及斑马鱼等运动能力下降、氧化损伤、肠道损伤以及代谢紊乱。葡萄糖代谢是生命活动最重要的能量供应之一,然而,关于nanoPS长期暴露对于葡萄糖代谢影响的了解还不够全面和深入。本研究中,使用低浓度nanoPS (0~100 μg·L-1)连续暴露模式生物秀丽隐杆线虫(Caenorhabditis elegans)5 d后观察对其糖代谢的影响。液体暴露5 d后,10 μg·L-1和100 μg·L-1处理组线虫确实摄入了一定量的微塑料。同时,使用高浓度(10 mg·L-1)绿色荧光nanoPS急性暴露线虫24 h,发现线虫体内摄入的微塑料主要分布在肠道的尾部。此外,短暂恢复12 h后,线虫可以将其排出。nanoPS液体暴露5 d后,10 μg·L-1和100 μg·L-1处理组线虫的食物摄入均显著减少,同时100 μg·L-1处理组线虫体内葡萄糖含量降低了21.8%。此外,与葡萄糖相关的一些代谢过程也受到了不同程度的影响。在这其中,100 μg·L-1处理组线虫体内糖原含量升高了2.5倍,而海藻糖含量呈剂量依赖降低,虽然变化不显著。至于葡萄糖分解代谢,液体暴露5 d后,100 μg·L-1处理组线虫体内丙酮酸含量降低了55.3%,同时一些与糖酵解相关基因包括gpd-2pyk-1pyk-2pfk-1.1的表达也都明显减弱。而柠檬酸和ATP含量在暴露后却都呈剂量依赖升高。在这其中,100 μg·L-1处理组线虫体内柠檬酸含量升高了85.9%,而10 μg·L-1和100 μg·L-1处理组线虫体内ATP含量分别升高了39.3%和51.3%。综上所述,结果表明,nanoPS液体连续暴露后,线虫体内不论是葡萄糖合成代谢还是分解代谢均受到了不同程度的影响,且这些影响可能与暴露过程中线虫对nanoPS的摄入及暴露后线虫的摄食减少相关。

English Abstract

参考文献 (34)

返回顶部

目录

/

返回文章
返回