[1] Brammer H. Ravenscroft P Arsenic in groundwater: A threat to sustainable agriculture in South and South-east Asia[J]. Environ Inter, 2009,35: 647-654
[2] Williams PN, Villada A, Deacon C, et al. Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley[J]. Environ Sci Technol, 2007,41: 6854-6859
[3] Zhu Y G, Williams P N, Meharg A A. Exposure to inorganic arsenic from rice: A global health issue?[J]. Environ Pollut, 2008,154: 169-171
[4] Cullen W R, Reimer K J. Arsenic speciation in the environment[J]. Chem Rev, 1989,89: 713-764
[5] Styblo M, Del Razo L M, Vega L, et al. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells[J]. Arch Toxicol, 2000. 74: 289-299
[6] National Research Council. Arsenic in Drinking Water 2001 Update[M]. Washington DC: National Academy Press, 2001: 25
[7] Zhao F J, Ma J F, Meharg A A, et al. Arsenic uptake and metabolism in plants[J]. New Phytol, 2009,181: 777-794
[8] Zhao F J, McGrath S P, Meharg A A. Arsenic as a food-chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies[J]. Ann Rev Plant Biol, 2010,61: 535-559
[9] Asher C J, Reay P F. Arsenic uptake by barley seedlings[J]. Aust J Plant Physiol, 1979,6: 459-466
[10] Ullrich-Eberius C I, Sanz A, Novacky A J. Evaluation of arsenate- and vanadate-associated changes of electrical membrane potential and phosphate transport in Lemna gibba-G1[J]. J Exp Bot, 1989,40: 119-128
[11] Shin H, Shin H S, Dewbre G R, et al. Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments[J]. Plant J, 2004, 39: 629-642
[12] González E, Solano R, Rubio V, et al. Phosphate transporter traffic facilitator1 is a plant-specific SEC12-related protein thatenables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis[J]. Plant Cell, 2005, 17: 3500-3512
[13] Meharg AA, Hartley-Whitaker J. Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species[J]. New Phytol, 2002, 154: 29-43
[14] Inskeep W P, McDermott T R. Fendorf S. Arsenic(Ⅴ)/(Ⅲ) cycling in soils and natural water: Chemical and microbiological processes.//Environmental Chemistry of Arsenic[M]. Frankenberger JWT, ed.; New York: Marcel Dekker,2002:183-215
[15] Takahashi Y, Minamikawa R, Hattori K H, et al. Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods[J]. Environ Sci Technol, 2004, 38: 1038-1044
[16] Xu X Y, McGrath S P, Meharg A, et al. Growing rice aerobically markedly decreases arsenic accumulation[J]. Environ Sci Technol, 2008,42: 5574-5579
[17] Panaullah G M, Alam T, Hossain M B, et al. Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh[J]. Plant Soil, 2009,317: 31-39
[18] Meharg A A, Jardine L. Arsenite transport into paddy rice (Oryza sativa) roots[J]. New Phytol, 2003, 157: 39-44
[19] Bienert G P, Thorsen M, Schüssler M D, et al. A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes[J]. BMC Biol, 2008,6: 26
[20] Isayenkov S V, Maathuis F J M. The Arabidopsis thaliana aquaglyceroporin AtNIP7;1 is a pathway for arsenite uptake[J]. FEBS Lett, 2008,582: 1625-1628
[21] Kamiya T, Tanaka M, Mitani N, et al. NIP1;1, an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis thaliana[J]. J Biol Chem, 2009,284: 2114-2120
[22] Ma J F, Yamaji N, Mitani N, et al. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain[J]. Proc Nat Acad Sci U S A, 2008,105: 9931-9935
[23] Li R Y, Stroud J L, Ma J F, et al. Mitigation of arsenic accumulation in rice with water management and silicon fertilization[J]. Environ Sci Technol, 2009,43: 3778-3783
[24] Xu X Y, McGrath S P, Zhao F J. Rapid reduction of arsenate in the medium mediated by plant roots[J]. New Phytol, 2007,176: 590-599
[25] Zhao F J, Ago Y, Mitani N, et al. The role of the rice aquaporin Lsi1 in arsenite efflux from roots[J]. New Phytol, 2010,186: 392-399
[26] Koch I, Wang L X, Ollson C A, et al. The predominance of inorganic arsenic species in plants from Yellowknife, Northwest Territories, Canada[J]. Environ Sci Technol, 2000,34: 22-26
[27] Meharg A A, Williams P N, Adomako E, et al. Geographical variation in total and inorganic arsenic content of polished (white) rice[J]. Environ Sci Technol, 2009,43: 1612-1617
[28] Abedin M J, Feldmann J, Meharg A A. Uptake kinetics of arsenic species in rice plants[J]. Plant Physiol, 2002, 128: 1120-1128
[29] Bentley R, Chasteen T G. Microbial methylation of metalloids: Arsenic, antimony, and bismuth[J]. Microbiol Mol Biol Rev, 2002, 66: 250-271
[30] Qin J, Rosen B P, Zhang Y, et al. Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase[J]. Proc Nat Acad Sci U S A, 2006, 103: 2075-2080
[31] Raab A, Williams P N, Meharg A, et al. Uptake and translocation of inorganic and methylated arsenic species by plants[J]. Environ Chem, 2007,4: 197-203
[32] Li R Y, Ago Y, Liu W J, et al. The rice aquaporin Lsi1 mediates uptake of methylated arsenic species[J]. Plant Physiol, 2009,150: 2071-2080
[33] Pickering I J, Prince R C, George M J, et al. Reduction and coordination of arsenic in Indian mustard[J]. Plant Physiol, 2000,122: 1171-1177
[34] Dhankher O P, Li Y J, Rosen B P, et al. Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression[J]. Nat Bioltechnol, 2002, 20: 1140-1145
[35] Liu W J, Wood B A, Raab A, et al. Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in arabidopsis[J]. Plant Physiol, 2010,152: 2211-2221
[36] Delnomdedieu M, Basti M M, Otvos J D, et al. Reduction and binding of arsenate and dimethylarsinate by glutathione-A magnetic resonance study[J]. Chem Biol Interact, 1994, 90: 139-155
[37] Dhankher O P, Rosen B P, McKinney E C, et al. Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2)[J]. Proc Nat Acad Sci U S A, 2006,103: 5413-5418
[38] Bleeker P M, Hakvoort H W J, Bliek M, et al. Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus[J]. Plant J, 2006, 45: 917-929
[39] Duan G L, Zhou Y, Tong Y P, et al. A CDC25 homologue from rice functions as an arsenate reductase[J]. New Phytol, 2007,174: 311-321
[40] Ellis D R, Gumaelius L, Indriolo E, et al. A novel arsenate reductase from the arsenic hyperaccumulating fern Pteris vittata[J]. Plant Physiol, 2006, 141: 1544-1554
[41] Chen W, Chi Y, Taylor N L, et al. Disruption of ptLPD1 or ptLPD2, genes that encode isoforms of the plastidial lipoamide dehydrogenase, confers arsenate hypersensitivity in Arabidopsis thaliana[J]. Plant Physiol, 2010,153: 1385-1397
[42] Raab A, Feldmann J, Meharg A A. The nature of arsenic-phytochelatin complexes in Holcus lanatus and Pteris cretica[J]. Plant Physiol, 2004, 134: 1113-1122
[43] Raab A, Schat H, Meharg A A, et al. Uptake, translocation and transformation of arsenate and arsenite in sunflower (Helianthus annuus): formation of arsenic-phytochelatin complexes during exposure to high arsenic concentrations[J]. New Phytol, 2005, 168: 551-558
[44] Raab A, Wright S H, Jaspars M, et al. Pentavalent arsenic can bind to biomolecules[J]. Angew Chem Int Edit, 2007,46: 2594-2597
[45] Schmger M E V, Oven M, Grill E. Detoxification of arsenic by phytochelatins in plants[J]. Plant Physiol, 2000,122: 793-801
[46] Sneller F E C, Van Heerwaarden L M, Kraaijeveld-Smit F J L, et al. Toxicity of arsenate in Silene vulgaris, accumulation and degradation of arsenate-induced phytochelatins[J]. New Phytol, 1999,144: 223-232
[47] Ha S B, Smith A P, Howden R, et al. Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe[J]. Plant Cell, 1999,11: 1153-1163
[48] Zavala YJ, Gerads R, Gürleyük H, et al. Arsenic in rice: Ⅱ. Arsenic speciation in USA grain and implications for human health[J]. Environ Sci Technol, 2008,42: 3861-3866
[49] Nissen P, Benson A A. Arsenic metabolism in fresh-water and terrestrial plants[J]. Physiol Plant, 1982, 54: 446-450
[50] Wu J H, Zhang R, Lilley R M. Methylation of arsenic in vitro by cell extracts from bentgrass (Agrostis tenuis): effect of acute exposure of plants to arsenate[J]. Func Plant Biol, 2002, 29: 73-80
[51] Norton G J, Lou-Hing D E, Meharg A A, et al. Rice-arsenate interactions in hydroponics: whole genome transcriptional analysis[J]. J Exp Bot, 2008,59: 2267-2276
[52] Ma L Q, Komar K M, Tu C, et al. A fern that hyperaccumulates arsenic[J]. Nature, 2001, 409: 579-579
[53] Wang J R, Zhao F J, Meharg A A, et al. Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation[J]. Plant Physiol, 2002, 130: 1552-1561
[54] Poynton C Y, Huang J W W, Blaylock M J, et al. Mechanisms of arsenic hyperaccumulation in Pteris species: root As influx and translocation[J]. Planta, 2004,219: 1080-1088
[55] Zhao F J, Wang J R, Barker J H A, et al. The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata[J]. New Phytol, 2003, 159: 403-410
[56] Zhang W H, Cai Y, Downum K R, et al. Thiol synthesis and arsenic hyperaccumulation in Pteris vittata (Chinese brake fern)[J]. Environ Pollut, 2004, 131: 337-345
[57] Su Y H, McGrath S P, Zhu Y G, et al. Highly efficient xylem transport of arsenite in the arsenic hyperaccumulator Pteris vittata[J]. New Phytol, 2008,180: 434-441
[58] Lombi E, Zhao F J, Fuhrmann M, et al. Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata[J]. New Phytol, 2002, 156: 195-203
[59] Zhang W H, Cai Y, Tu C, et al. Arsenic speciation and distribution in an arsenic hyperaccumulating plant[J]. Sci Total Environ, 2002, 300: 167-177
[60] Webb S M, Gaillard J F, Ma L Q, et al. XAS speciation of arsenic in a hyper-accumulating fern[J]. Environ Sci Technol, 2003, 37: 754-760
[61] Pickering I J, Gumaelius L, Harris H H, et al. Localizing the biochemical transformations of arsenate in a hyperaccumulating fern[J]. Environ Sci Technol, 2006, 40: 5010-5014
[62] Indriolo E, Na G, Ellis D, et al. A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants[J]. Plant Cell, 2010,22: 2045-2057