[1]
|
Brammer H. Ravenscroft P Arsenic in groundwater: A threat to sustainable agriculture in South and South-east Asia[J]. Environ Inter, 2009,35: 647-654
|
[2]
|
Williams PN, Villada A, Deacon C, et al. Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley[J]. Environ Sci Technol, 2007,41: 6854-6859
|
[3]
|
Zhu Y G, Williams P N, Meharg A A. Exposure to inorganic arsenic from rice: A global health issue?[J]. Environ Pollut, 2008,154: 169-171
|
[4]
|
Cullen W R, Reimer K J. Arsenic speciation in the environment[J]. Chem Rev, 1989,89: 713-764
|
[5]
|
Styblo M, Del Razo L M, Vega L, et al. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells[J]. Arch Toxicol, 2000. 74: 289-299
|
[6]
|
National Research Council. Arsenic in Drinking Water 2001 Update[M]. Washington DC: National Academy Press, 2001: 25
|
[7]
|
Zhao F J, Ma J F, Meharg A A, et al. Arsenic uptake and metabolism in plants[J]. New Phytol, 2009,181: 777-794
|
[8]
|
Zhao F J, McGrath S P, Meharg A A. Arsenic as a food-chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies[J]. Ann Rev Plant Biol, 2010,61: 535-559
|
[9]
|
Asher C J, Reay P F. Arsenic uptake by barley seedlings[J]. Aust J Plant Physiol, 1979,6: 459-466
|
[10]
|
Ullrich-Eberius C I, Sanz A, Novacky A J. Evaluation of arsenate- and vanadate-associated changes of electrical membrane potential and phosphate transport in Lemna gibba-G1[J]. J Exp Bot, 1989,40: 119-128
|
[11]
|
Shin H, Shin H S, Dewbre G R, et al. Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments[J]. Plant J, 2004, 39: 629-642
|
[12]
|
González E, Solano R, Rubio V, et al. Phosphate transporter traffic facilitator1 is a plant-specific SEC12-related protein thatenables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis[J]. Plant Cell, 2005, 17: 3500-3512
|
[13]
|
Meharg AA, Hartley-Whitaker J. Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species[J]. New Phytol, 2002, 154: 29-43
|
[14]
|
Inskeep W P, McDermott T R. Fendorf S. Arsenic(Ⅴ)/(Ⅲ) cycling in soils and natural water: Chemical and microbiological processes.//Environmental Chemistry of Arsenic[M]. Frankenberger JWT, ed.; New York: Marcel Dekker,2002:183-215
|
[15]
|
Takahashi Y, Minamikawa R, Hattori K H, et al. Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods[J]. Environ Sci Technol, 2004, 38: 1038-1044
|
[16]
|
Xu X Y, McGrath S P, Meharg A, et al. Growing rice aerobically markedly decreases arsenic accumulation[J]. Environ Sci Technol, 2008,42: 5574-5579
|
[17]
|
Panaullah G M, Alam T, Hossain M B, et al. Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh[J]. Plant Soil, 2009,317: 31-39
|
[18]
|
Meharg A A, Jardine L. Arsenite transport into paddy rice (Oryza sativa) roots[J]. New Phytol, 2003, 157: 39-44
|
[19]
|
Bienert G P, Thorsen M, Schüssler M D, et al. A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes[J]. BMC Biol, 2008,6: 26
|
[20]
|
Isayenkov S V, Maathuis F J M. The Arabidopsis thaliana aquaglyceroporin AtNIP7;1 is a pathway for arsenite uptake[J]. FEBS Lett, 2008,582: 1625-1628
|
[21]
|
Kamiya T, Tanaka M, Mitani N, et al. NIP1;1, an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis thaliana[J]. J Biol Chem, 2009,284: 2114-2120
|
[22]
|
Ma J F, Yamaji N, Mitani N, et al. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain[J]. Proc Nat Acad Sci U S A, 2008,105: 9931-9935
|
[23]
|
Li R Y, Stroud J L, Ma J F, et al. Mitigation of arsenic accumulation in rice with water management and silicon fertilization[J]. Environ Sci Technol, 2009,43: 3778-3783
|
[24]
|
Xu X Y, McGrath S P, Zhao F J. Rapid reduction of arsenate in the medium mediated by plant roots[J]. New Phytol, 2007,176: 590-599
|
[25]
|
Zhao F J, Ago Y, Mitani N, et al. The role of the rice aquaporin Lsi1 in arsenite efflux from roots[J]. New Phytol, 2010,186: 392-399
|
[26]
|
Koch I, Wang L X, Ollson C A, et al. The predominance of inorganic arsenic species in plants from Yellowknife, Northwest Territories, Canada[J]. Environ Sci Technol, 2000,34: 22-26
|
[27]
|
Meharg A A, Williams P N, Adomako E, et al. Geographical variation in total and inorganic arsenic content of polished (white) rice[J]. Environ Sci Technol, 2009,43: 1612-1617
|
[28]
|
Abedin M J, Feldmann J, Meharg A A. Uptake kinetics of arsenic species in rice plants[J]. Plant Physiol, 2002, 128: 1120-1128
|
[29]
|
Bentley R, Chasteen T G. Microbial methylation of metalloids: Arsenic, antimony, and bismuth[J]. Microbiol Mol Biol Rev, 2002, 66: 250-271
|
[30]
|
Qin J, Rosen B P, Zhang Y, et al. Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase[J]. Proc Nat Acad Sci U S A, 2006, 103: 2075-2080
|
[31]
|
Raab A, Williams P N, Meharg A, et al. Uptake and translocation of inorganic and methylated arsenic species by plants[J]. Environ Chem, 2007,4: 197-203
|
[32]
|
Li R Y, Ago Y, Liu W J, et al. The rice aquaporin Lsi1 mediates uptake of methylated arsenic species[J]. Plant Physiol, 2009,150: 2071-2080
|
[33]
|
Pickering I J, Prince R C, George M J, et al. Reduction and coordination of arsenic in Indian mustard[J]. Plant Physiol, 2000,122: 1171-1177
|
[34]
|
Dhankher O P, Li Y J, Rosen B P, et al. Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression[J]. Nat Bioltechnol, 2002, 20: 1140-1145
|
[35]
|
Liu W J, Wood B A, Raab A, et al. Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in arabidopsis[J]. Plant Physiol, 2010,152: 2211-2221
|
[36]
|
Delnomdedieu M, Basti M M, Otvos J D, et al. Reduction and binding of arsenate and dimethylarsinate by glutathione-A magnetic resonance study[J]. Chem Biol Interact, 1994, 90: 139-155
|
[37]
|
Dhankher O P, Rosen B P, McKinney E C, et al. Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2)[J]. Proc Nat Acad Sci U S A, 2006,103: 5413-5418
|
[38]
|
Bleeker P M, Hakvoort H W J, Bliek M, et al. Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus[J]. Plant J, 2006, 45: 917-929
|
[39]
|
Duan G L, Zhou Y, Tong Y P, et al. A CDC25 homologue from rice functions as an arsenate reductase[J]. New Phytol, 2007,174: 311-321
|
[40]
|
Ellis D R, Gumaelius L, Indriolo E, et al. A novel arsenate reductase from the arsenic hyperaccumulating fern Pteris vittata[J]. Plant Physiol, 2006, 141: 1544-1554
|
[41]
|
Chen W, Chi Y, Taylor N L, et al. Disruption of ptLPD1 or ptLPD2, genes that encode isoforms of the plastidial lipoamide dehydrogenase, confers arsenate hypersensitivity in Arabidopsis thaliana[J]. Plant Physiol, 2010,153: 1385-1397
|
[42]
|
Raab A, Feldmann J, Meharg A A. The nature of arsenic-phytochelatin complexes in Holcus lanatus and Pteris cretica[J]. Plant Physiol, 2004, 134: 1113-1122
|
[43]
|
Raab A, Schat H, Meharg A A, et al. Uptake, translocation and transformation of arsenate and arsenite in sunflower (Helianthus annuus): formation of arsenic-phytochelatin complexes during exposure to high arsenic concentrations[J]. New Phytol, 2005, 168: 551-558
|
[44]
|
Raab A, Wright S H, Jaspars M, et al. Pentavalent arsenic can bind to biomolecules[J]. Angew Chem Int Edit, 2007,46: 2594-2597
|
[45]
|
Schmger M E V, Oven M, Grill E. Detoxification of arsenic by phytochelatins in plants[J]. Plant Physiol, 2000,122: 793-801
|
[46]
|
Sneller F E C, Van Heerwaarden L M, Kraaijeveld-Smit F J L, et al. Toxicity of arsenate in Silene vulgaris, accumulation and degradation of arsenate-induced phytochelatins[J]. New Phytol, 1999,144: 223-232
|
[47]
|
Ha S B, Smith A P, Howden R, et al. Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe[J]. Plant Cell, 1999,11: 1153-1163
|
[48]
|
Zavala YJ, Gerads R, Gürleyük H, et al. Arsenic in rice: Ⅱ. Arsenic speciation in USA grain and implications for human health[J]. Environ Sci Technol, 2008,42: 3861-3866
|
[49]
|
Nissen P, Benson A A. Arsenic metabolism in fresh-water and terrestrial plants[J]. Physiol Plant, 1982, 54: 446-450
|
[50]
|
Wu J H, Zhang R, Lilley R M. Methylation of arsenic in vitro by cell extracts from bentgrass (Agrostis tenuis): effect of acute exposure of plants to arsenate[J]. Func Plant Biol, 2002, 29: 73-80
|
[51]
|
Norton G J, Lou-Hing D E, Meharg A A, et al. Rice-arsenate interactions in hydroponics: whole genome transcriptional analysis[J]. J Exp Bot, 2008,59: 2267-2276
|
[52]
|
Ma L Q, Komar K M, Tu C, et al. A fern that hyperaccumulates arsenic[J]. Nature, 2001, 409: 579-579
|
[53]
|
Wang J R, Zhao F J, Meharg A A, et al. Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation[J]. Plant Physiol, 2002, 130: 1552-1561
|
[54]
|
Poynton C Y, Huang J W W, Blaylock M J, et al. Mechanisms of arsenic hyperaccumulation in Pteris species: root As influx and translocation[J]. Planta, 2004,219: 1080-1088
|
[55]
|
Zhao F J, Wang J R, Barker J H A, et al. The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata[J]. New Phytol, 2003, 159: 403-410
|
[56]
|
Zhang W H, Cai Y, Downum K R, et al. Thiol synthesis and arsenic hyperaccumulation in Pteris vittata (Chinese brake fern)[J]. Environ Pollut, 2004, 131: 337-345
|
[57]
|
Su Y H, McGrath S P, Zhu Y G, et al. Highly efficient xylem transport of arsenite in the arsenic hyperaccumulator Pteris vittata[J]. New Phytol, 2008,180: 434-441
|
[58]
|
Lombi E, Zhao F J, Fuhrmann M, et al. Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata[J]. New Phytol, 2002, 156: 195-203
|
[59]
|
Zhang W H, Cai Y, Tu C, et al. Arsenic speciation and distribution in an arsenic hyperaccumulating plant[J]. Sci Total Environ, 2002, 300: 167-177
|
[60]
|
Webb S M, Gaillard J F, Ma L Q, et al. XAS speciation of arsenic in a hyper-accumulating fern[J]. Environ Sci Technol, 2003, 37: 754-760
|
[61]
|
Pickering I J, Gumaelius L, Harris H H, et al. Localizing the biochemical transformations of arsenate in a hyperaccumulating fern[J]. Environ Sci Technol, 2006, 40: 5010-5014
|
[62]
|
Indriolo E, Na G, Ellis D, et al. A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants[J]. Plant Cell, 2010,22: 2045-2057
|