植物砷吸收与代谢的研究进展

刘文菊, 赵方杰. 植物砷吸收与代谢的研究进展[J]. 环境化学, 2011, 30(1): 56-62.
引用本文: 刘文菊, 赵方杰. 植物砷吸收与代谢的研究进展[J]. 环境化学, 2011, 30(1): 56-62.
LIU Wenju, ZHAO Fangjie. A BRIEF REVIEW OF ARSENIC UPTAKE AND METABOLISM IN PLANTS[J]. Environmental Chemistry, 2011, 30(1): 56-62.
Citation: LIU Wenju, ZHAO Fangjie. A BRIEF REVIEW OF ARSENIC UPTAKE AND METABOLISM IN PLANTS[J]. Environmental Chemistry, 2011, 30(1): 56-62.

植物砷吸收与代谢的研究进展

  • 基金项目:

    国家自然科学基金项目(40673060,41073074)资助.

A BRIEF REVIEW OF ARSENIC UPTAKE AND METABOLISM IN PLANTS

  • Fund Project:
  • 摘要: 砷(As)作为一种植物非必需的类金属元素广泛存在于自然界中,砷过量摄入不仅会对植物生长产生毒害作用,而且在植物的可食部位累积并通过食物链对人体健康构成威胁.生长介质中的砷酸盐(五价砷)一般是通过磷酸盐转运蛋白被植物吸收的,而亚砷酸(三价砷)和没有解离的甲基化砷则主要是通过质膜上的水通道蛋白被植物吸收的.在植物体内五价砷很容易被还原为三价砷,三价砷和带巯基的植物络合素(PCs)结合形成络合物储存在液泡中,从而使植物达到解毒的目的.植物能否将无机砷甲基化仍待证实.本文综述了近年来植物对砷的吸收及其在植物体内存在行为的相关研究.
  • 加载中
  • [1] Brammer H. Ravenscroft P Arsenic in groundwater: A threat to sustainable agriculture in South and South-east Asia[J]. Environ Inter, 2009,35: 647-654
    [2] Williams PN, Villada A, Deacon C, et al. Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley[J]. Environ Sci Technol, 2007,41: 6854-6859
    [3] Zhu Y G, Williams P N, Meharg A A. Exposure to inorganic arsenic from rice: A global health issue?[J]. Environ Pollut, 2008,154: 169-171
    [4] Cullen W R, Reimer K J. Arsenic speciation in the environment[J]. Chem Rev, 1989,89: 713-764
    [5] Styblo M, Del Razo L M, Vega L, et al. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells[J]. Arch Toxicol, 2000. 74: 289-299
    [6] National Research Council. Arsenic in Drinking Water 2001 Update[M]. Washington DC: National Academy Press, 2001: 25
    [7] Zhao F J, Ma J F, Meharg A A, et al. Arsenic uptake and metabolism in plants[J]. New Phytol, 2009,181: 777-794
    [8] Zhao F J, McGrath S P, Meharg A A. Arsenic as a food-chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies[J]. Ann Rev Plant Biol, 2010,61: 535-559
    [9] Asher C J, Reay P F. Arsenic uptake by barley seedlings[J]. Aust J Plant Physiol, 1979,6: 459-466
    [10] Ullrich-Eberius C I, Sanz A, Novacky A J. Evaluation of arsenate- and vanadate-associated changes of electrical membrane potential and phosphate transport in Lemna gibba-G1[J]. J Exp Bot, 1989,40: 119-128
    [11] Shin H, Shin H S, Dewbre G R, et al. Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments[J]. Plant J, 2004, 39: 629-642
    [12] González E, Solano R, Rubio V, et al. Phosphate transporter traffic facilitator1 is a plant-specific SEC12-related protein thatenables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis[J]. Plant Cell, 2005, 17: 3500-3512
    [13] Meharg AA, Hartley-Whitaker J. Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species[J]. New Phytol, 2002, 154: 29-43
    [14] Inskeep W P, McDermott T R. Fendorf S. Arsenic(Ⅴ)/(Ⅲ) cycling in soils and natural water: Chemical and microbiological processes.//Environmental Chemistry of Arsenic[M]. Frankenberger JWT, ed.; New York: Marcel Dekker,2002:183-215
    [15] Takahashi Y, Minamikawa R, Hattori K H, et al. Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods[J]. Environ Sci Technol, 2004, 38: 1038-1044
    [16] Xu X Y, McGrath S P, Meharg A, et al. Growing rice aerobically markedly decreases arsenic accumulation[J]. Environ Sci Technol, 2008,42: 5574-5579
    [17] Panaullah G M, Alam T, Hossain M B, et al. Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh[J]. Plant Soil, 2009,317: 31-39
    [18] Meharg A A, Jardine L. Arsenite transport into paddy rice (Oryza sativa) roots[J]. New Phytol, 2003, 157: 39-44
    [19] Bienert G P, Thorsen M, Schüssler M D, et al. A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes[J]. BMC Biol, 2008,6: 26
    [20] Isayenkov S V, Maathuis F J M. The Arabidopsis thaliana aquaglyceroporin AtNIP7;1 is a pathway for arsenite uptake[J]. FEBS Lett, 2008,582: 1625-1628
    [21] Kamiya T, Tanaka M, Mitani N, et al. NIP1;1, an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis thaliana[J]. J Biol Chem, 2009,284: 2114-2120
    [22] Ma J F, Yamaji N, Mitani N, et al. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain[J]. Proc Nat Acad Sci U S A, 2008,105: 9931-9935
    [23] Li R Y, Stroud J L, Ma J F, et al. Mitigation of arsenic accumulation in rice with water management and silicon fertilization[J]. Environ Sci Technol, 2009,43: 3778-3783
    [24] Xu X Y, McGrath S P, Zhao F J. Rapid reduction of arsenate in the medium mediated by plant roots[J]. New Phytol, 2007,176: 590-599
    [25] Zhao F J, Ago Y, Mitani N, et al. The role of the rice aquaporin Lsi1 in arsenite efflux from roots[J]. New Phytol, 2010,186: 392-399
    [26] Koch I, Wang L X, Ollson C A, et al. The predominance of inorganic arsenic species in plants from Yellowknife, Northwest Territories, Canada[J]. Environ Sci Technol, 2000,34: 22-26
    [27] Meharg A A, Williams P N, Adomako E, et al. Geographical variation in total and inorganic arsenic content of polished (white) rice[J]. Environ Sci Technol, 2009,43: 1612-1617
    [28] Abedin M J, Feldmann J, Meharg A A. Uptake kinetics of arsenic species in rice plants[J]. Plant Physiol, 2002, 128: 1120-1128
    [29] Bentley R, Chasteen T G. Microbial methylation of metalloids: Arsenic, antimony, and bismuth[J]. Microbiol Mol Biol Rev, 2002, 66: 250-271
    [30] Qin J, Rosen B P, Zhang Y, et al. Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase[J]. Proc Nat Acad Sci U S A, 2006, 103: 2075-2080
    [31] Raab A, Williams P N, Meharg A, et al. Uptake and translocation of inorganic and methylated arsenic species by plants[J]. Environ Chem, 2007,4: 197-203
    [32] Li R Y, Ago Y, Liu W J, et al. The rice aquaporin Lsi1 mediates uptake of methylated arsenic species[J]. Plant Physiol, 2009,150: 2071-2080
    [33] Pickering I J, Prince R C, George M J, et al. Reduction and coordination of arsenic in Indian mustard[J]. Plant Physiol, 2000,122: 1171-1177
    [34] Dhankher O P, Li Y J, Rosen B P, et al. Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression[J]. Nat Bioltechnol, 2002, 20: 1140-1145
    [35] Liu W J, Wood B A, Raab A, et al. Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in arabidopsis[J]. Plant Physiol, 2010,152: 2211-2221
    [36] Delnomdedieu M, Basti M M, Otvos J D, et al. Reduction and binding of arsenate and dimethylarsinate by glutathione-A magnetic resonance study[J]. Chem Biol Interact, 1994, 90: 139-155
    [37] Dhankher O P, Rosen B P, McKinney E C, et al. Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2)[J]. Proc Nat Acad Sci U S A, 2006,103: 5413-5418
    [38] Bleeker P M, Hakvoort H W J, Bliek M, et al. Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus[J]. Plant J, 2006, 45: 917-929
    [39] Duan G L, Zhou Y, Tong Y P, et al. A CDC25 homologue from rice functions as an arsenate reductase[J]. New Phytol, 2007,174: 311-321
    [40] Ellis D R, Gumaelius L, Indriolo E, et al. A novel arsenate reductase from the arsenic hyperaccumulating fern Pteris vittata[J]. Plant Physiol, 2006, 141: 1544-1554
    [41] Chen W, Chi Y, Taylor N L, et al. Disruption of ptLPD1 or ptLPD2, genes that encode isoforms of the plastidial lipoamide dehydrogenase, confers arsenate hypersensitivity in Arabidopsis thaliana[J]. Plant Physiol, 2010,153: 1385-1397
    [42] Raab A, Feldmann J, Meharg A A. The nature of arsenic-phytochelatin complexes in Holcus lanatus and Pteris cretica[J]. Plant Physiol, 2004, 134: 1113-1122
    [43] Raab A, Schat H, Meharg A A, et al. Uptake, translocation and transformation of arsenate and arsenite in sunflower (Helianthus annuus): formation of arsenic-phytochelatin complexes during exposure to high arsenic concentrations[J]. New Phytol, 2005, 168: 551-558
    [44] Raab A, Wright S H, Jaspars M, et al. Pentavalent arsenic can bind to biomolecules[J]. Angew Chem Int Edit, 2007,46: 2594-2597
    [45] Schmger M E V, Oven M, Grill E. Detoxification of arsenic by phytochelatins in plants[J]. Plant Physiol, 2000,122: 793-801
    [46] Sneller F E C, Van Heerwaarden L M, Kraaijeveld-Smit F J L, et al. Toxicity of arsenate in Silene vulgaris, accumulation and degradation of arsenate-induced phytochelatins[J]. New Phytol, 1999,144: 223-232
    [47] Ha S B, Smith A P, Howden R, et al. Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe[J]. Plant Cell, 1999,11: 1153-1163
    [48] Zavala YJ, Gerads R, Gürleyük H, et al. Arsenic in rice: Ⅱ. Arsenic speciation in USA grain and implications for human health[J]. Environ Sci Technol, 2008,42: 3861-3866
    [49] Nissen P, Benson A A. Arsenic metabolism in fresh-water and terrestrial plants[J]. Physiol Plant, 1982, 54: 446-450
    [50] Wu J H, Zhang R, Lilley R M. Methylation of arsenic in vitro by cell extracts from bentgrass (Agrostis tenuis): effect of acute exposure of plants to arsenate[J]. Func Plant Biol, 2002, 29: 73-80
    [51] Norton G J, Lou-Hing D E, Meharg A A, et al. Rice-arsenate interactions in hydroponics: whole genome transcriptional analysis[J]. J Exp Bot, 2008,59: 2267-2276
    [52] Ma L Q, Komar K M, Tu C, et al. A fern that hyperaccumulates arsenic[J]. Nature, 2001, 409: 579-579
    [53] Wang J R, Zhao F J, Meharg A A, et al. Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation[J]. Plant Physiol, 2002, 130: 1552-1561
    [54] Poynton C Y, Huang J W W, Blaylock M J, et al. Mechanisms of arsenic hyperaccumulation in Pteris species: root As influx and translocation[J]. Planta, 2004,219: 1080-1088
    [55] Zhao F J, Wang J R, Barker J H A, et al. The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata[J]. New Phytol, 2003, 159: 403-410
    [56] Zhang W H, Cai Y, Downum K R, et al. Thiol synthesis and arsenic hyperaccumulation in Pteris vittata (Chinese brake fern)[J]. Environ Pollut, 2004, 131: 337-345
    [57] Su Y H, McGrath S P, Zhu Y G, et al. Highly efficient xylem transport of arsenite in the arsenic hyperaccumulator Pteris vittata[J]. New Phytol, 2008,180: 434-441
    [58] Lombi E, Zhao F J, Fuhrmann M, et al. Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata[J]. New Phytol, 2002, 156: 195-203
    [59] Zhang W H, Cai Y, Tu C, et al. Arsenic speciation and distribution in an arsenic hyperaccumulating plant[J]. Sci Total Environ, 2002, 300: 167-177
    [60] Webb S M, Gaillard J F, Ma L Q, et al. XAS speciation of arsenic in a hyper-accumulating fern[J]. Environ Sci Technol, 2003, 37: 754-760
    [61] Pickering I J, Gumaelius L, Harris H H, et al. Localizing the biochemical transformations of arsenate in a hyperaccumulating fern[J]. Environ Sci Technol, 2006, 40: 5010-5014
    [62] Indriolo E, Na G, Ellis D, et al. A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants[J]. Plant Cell, 2010,22: 2045-2057
  • 加载中
计量
  • 文章访问数:  2007
  • HTML全文浏览数:  1841
  • PDF下载数:  984
  • 施引文献:  0
出版历程
  • 收稿日期:  2010-09-01
刘文菊, 赵方杰. 植物砷吸收与代谢的研究进展[J]. 环境化学, 2011, 30(1): 56-62.
引用本文: 刘文菊, 赵方杰. 植物砷吸收与代谢的研究进展[J]. 环境化学, 2011, 30(1): 56-62.
LIU Wenju, ZHAO Fangjie. A BRIEF REVIEW OF ARSENIC UPTAKE AND METABOLISM IN PLANTS[J]. Environmental Chemistry, 2011, 30(1): 56-62.
Citation: LIU Wenju, ZHAO Fangjie. A BRIEF REVIEW OF ARSENIC UPTAKE AND METABOLISM IN PLANTS[J]. Environmental Chemistry, 2011, 30(1): 56-62.

植物砷吸收与代谢的研究进展

  • 1.  河北农业大学资源与环境学院, 保定, 071000;
  • 2.  Rothamsted Research, Harpenden, AL5 2JQ, U.K.
基金项目:

国家自然科学基金项目(40673060,41073074)资助.

摘要: 砷(As)作为一种植物非必需的类金属元素广泛存在于自然界中,砷过量摄入不仅会对植物生长产生毒害作用,而且在植物的可食部位累积并通过食物链对人体健康构成威胁.生长介质中的砷酸盐(五价砷)一般是通过磷酸盐转运蛋白被植物吸收的,而亚砷酸(三价砷)和没有解离的甲基化砷则主要是通过质膜上的水通道蛋白被植物吸收的.在植物体内五价砷很容易被还原为三价砷,三价砷和带巯基的植物络合素(PCs)结合形成络合物储存在液泡中,从而使植物达到解毒的目的.植物能否将无机砷甲基化仍待证实.本文综述了近年来植物对砷的吸收及其在植物体内存在行为的相关研究.

English Abstract

参考文献 (62)

返回顶部

目录

/

返回文章
返回