[1] Gang M, Jain N. Waste gypsum from intermediate dye industries for production of building materials[J]. Constr Build Mater, 2010, 24(9):1632-1637
[2] Mathur N, Bhatnagar P, Nagar P, et al. Mutagenicity assessment of effluents from textile/dye industries of Sanganer, Jaipur (India):a case study[J]. Ecotox Environ Safe, 2005, 61(1): 105-113
[3] Banat I M, Nigam P, Singh D, et al. Microbial decolorization of textile-dye-containing effluents: A review[J]. Bioresource Technol, 1996, 58:217-227
[4] Mittal A, Mittal J, Kurup L. Adsorption isotherms, kinetics and column operations for the removal of hazardous dye, Tartrazine from aqueous solutions using waste materials-Bottom Ash and De-Oiled Soya, as adsorbents [J]. J Hazard Mater, 2006, 136: 567-578
[5] Ali N, Hameed A, Ahme S, et al. Decolorization of structurally different textile dyes by Aspergillus niger SA1 [J]. W J Microbiology and Biotechnology, 2008,24:1067-1072
[6] Wong Y C, Szeto Y S, Cheungw H, et al. Effect of temperature, particle size and percentage deacetylation on the adsorption of acid dyes on chitosan [J]. Adsorption, 2008, 1(14):11-20
[7] Kornaros M, Lyberatos G. Biological treatment of wastewaters from a dye manufacturing company using a trickling filter[J]. J Hazard Mater, 2006, 136 (1):95-102
[8] Lajeunesse A, Gagnon C, Gagne F, et al. Distribution of antidepressants and their metabolites in brook trout exposed to municipal wastewaters before and after ozone treatment-Evidence of biological effects[J]. Chemosphere, 2011, 83(4):564-571
[9] Gonzalez-Olmos R, Holzer F, Kopinke F D, et al. Indications of the reactive species in a heterogeneous Fenton-like reaction using Fe-containing zeolites[J]. Appl Catal a-Gen, 2011, 398 (1/2): 44-53
[10] Capar G, Yetis U, Yilmaz L. Membrane based strategies for the pre-treatment of acid dye bath wastewaters[J]. J Hazard Mater, 2006, 135 (1/3): 423-430
[11] Ku Y, Wang L C, Ma C M, et al. Photocatalytic oxidation of Reactive Red 22 in aqueous solution using La2Ti2O7 photocatalyst[J]. Water Air Soil Poll, 2011, 215: 97-103
[12] Karim A B, Mounir B, Hachkar M, et al. Removal of Basic Red 46 dye from aqueous solution by adsorption onto Moroccan clay[J]. J Hazard Mater, 2009, 168 (1):304-309
[13] Wu C H. Adsorption of reactive dye onto carbon nanotubes:Equilibrium, kinetics and thermodynamics[J]. Journal of Hazardous Materials,2007, 144: 93-100
[14] Long R Q, Yang R T. Carbon nanotubes as superior sorbent for dioxin removal[J]. J Am Chem Soc, 2001, 123: 2058-2059
[15] Fraczek-Szczypta A, Menaszek E, Blazewicz S. Some observations on carbon nanotubes susceptibility to cell phagocytosis[J]. J Nanomater, 2011, doi: 10.1155/2011/473516
[16] Ngomsik A F, Bee A, Draye M, et al. Magnetic nano- and microparticles for metal removal and environmental applications: a review[J]. Comptes Rendus Chimie, 2005, 8(6/7): 963-970
[17] Li W W, Gao C, Qian H F, et al. Multiamino-functionalized carbon nanotubes and their applications in loading quantum dots and magnetic nanoparticles[J]. J Mater Chem, 2006, 16 (19): 1852-1859
[18] Korneva G, Ye H H, Gogotsi Y, et al. Carbon nanotubes loaded with magnetic particles[J]. Nano Lett, 2005, 5 (5): 879-884
[19] El-Gendy A A, Ibrahim E M M, Khavrus V O, et al. The synthesis of carbon coated Fe, Co and Ni nanoparticles and an examination of their magnetic properties[J]. Carbon, 2009, 47 (12):2821-2828
[20] Dahl J A, Maddux B L S, Hutchison J E. Toward greener nanosynthesis[J]. Chem Rev, 2007, 107 (6): 2228-2269
[21] Stratmann M, Rohwerder M.A pore view of corrosion [J]. Nature, 2001, 410: 420-422
[22] Onyango M S, Kojima Y, Aoyi O, et al. Adsorption equilibrium modeling and solution chemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeolite F-9[J]. J Colloid Interface Sci, 2004, 279(2): 341-350
[23] Helfferich F, Ion Exchange[M]. New York: McGraw-Hill Book Co, 1962
[24] Tahir S S, Rauf N. Removal of cationic dye from aqueous solutions by adsorption onto bentonite clay [J]. Chemosphere,2006, 63(11):1842-1848