芬顿试剂法制备磁性碳纳米管及其对亚甲基蓝的吸附性能

周露, 陈君红, 于飞, 袁志文, 马杰. 芬顿试剂法制备磁性碳纳米管及其对亚甲基蓝的吸附性能[J]. 环境化学, 2012, 31(5): 669-676.
引用本文: 周露, 陈君红, 于飞, 袁志文, 马杰. 芬顿试剂法制备磁性碳纳米管及其对亚甲基蓝的吸附性能[J]. 环境化学, 2012, 31(5): 669-676.
ZHOU Lu, CHEN Junhong, YU Fei, YUAN Zhiwen, MA Jie. Adsorption of methylene blue on magnetic multiwalled carbon nanotube synthesized by Fenton reaction[J]. Environmental Chemistry, 2012, 31(5): 669-676.
Citation: ZHOU Lu, CHEN Junhong, YU Fei, YUAN Zhiwen, MA Jie. Adsorption of methylene blue on magnetic multiwalled carbon nanotube synthesized by Fenton reaction[J]. Environmental Chemistry, 2012, 31(5): 669-676.

芬顿试剂法制备磁性碳纳米管及其对亚甲基蓝的吸附性能

  • 基金项目:

    国家自然科学基金(21177095)

    高等学校博士学科点专项科研基金(20100072110033)

    同济大学青年优秀人才培养行动计划(2010KJ026)资助.

Adsorption of methylene blue on magnetic multiwalled carbon nanotube synthesized by Fenton reaction

  • Fund Project:
  • 摘要: 采用芬顿试剂法在碳纳米管纯化样品表面负载纳米磁性氧化铁颗粒,制备磁性碳纳米管杂化材料(MWCNTs/Fe2O3),该杂化材料具有较高的纳米氧化铁负载率(>50%)和优异的磁性能,制备过程中无需额外添加阳离子,不会对环境造成不利影响.将磁性碳纳米管杂化材料应用于染料废水处理中,结果发现MWCNTs/Fe2O3对亚甲基蓝染料吸附性能较好,吸附后用磁铁易于达到固液分离的效果.吸附性能研究表明,磁性碳纳米管对水溶液中亚甲基蓝的吸附在40 min内吸附容量迅速上升,其值达到最大平衡吸附容量的88%以上,60 min基本达到平衡,吸附过程符合准二级动力学模型(R2>0.999).磁性碳纳米管吸附亚甲基蓝的平衡吸附量qe与亚甲基蓝溶液的平衡浓度Ce的关系满足Langmuir(R2>0.999)、Freundlich(R2>0.97)以及Dubinin-Radushkevich(D-R) (R2>0.96)等温吸附模型.通过Langmuir模型计算可知磁性碳纳米管对亚甲基蓝的最大吸附容量为69.98 mg·g-1,吸附过程为有利吸附,由D-R模型计算结果可以推断MWCNTs/Fe2O3对水溶液中亚甲基蓝的吸附机制以化学吸附为主.
  • 加载中
  • [1] Gang M, Jain N. Waste gypsum from intermediate dye industries for production of building materials[J]. Constr Build Mater, 2010, 24(9):1632-1637
    [2] Mathur N, Bhatnagar P, Nagar P, et al. Mutagenicity assessment of effluents from textile/dye industries of Sanganer, Jaipur (India):a case study[J]. Ecotox Environ Safe, 2005, 61(1): 105-113
    [3] Banat I M, Nigam P, Singh D, et al. Microbial decolorization of textile-dye-containing effluents: A review[J]. Bioresource Technol, 1996, 58:217-227
    [4] Mittal A, Mittal J, Kurup L. Adsorption isotherms, kinetics and column operations for the removal of hazardous dye, Tartrazine from aqueous solutions using waste materials-Bottom Ash and De-Oiled Soya, as adsorbents [J]. J Hazard Mater, 2006, 136: 567-578
    [5] Ali N, Hameed A, Ahme S, et al. Decolorization of structurally different textile dyes by Aspergillus niger SA1 [J]. W J Microbiology and Biotechnology, 2008,24:1067-1072
    [6] Wong Y C, Szeto Y S, Cheungw H, et al. Effect of temperature, particle size and percentage deacetylation on the adsorption of acid dyes on chitosan [J]. Adsorption, 2008, 1(14):11-20
    [7] Kornaros M, Lyberatos G. Biological treatment of wastewaters from a dye manufacturing company using a trickling filter[J]. J Hazard Mater, 2006, 136 (1):95-102
    [8] Lajeunesse A, Gagnon C, Gagne F, et al. Distribution of antidepressants and their metabolites in brook trout exposed to municipal wastewaters before and after ozone treatment-Evidence of biological effects[J]. Chemosphere, 2011, 83(4):564-571
    [9] Gonzalez-Olmos R, Holzer F, Kopinke F D, et al. Indications of the reactive species in a heterogeneous Fenton-like reaction using Fe-containing zeolites[J]. Appl Catal a-Gen, 2011, 398 (1/2): 44-53
    [10] Capar G, Yetis U, Yilmaz L. Membrane based strategies for the pre-treatment of acid dye bath wastewaters[J]. J Hazard Mater, 2006, 135 (1/3): 423-430
    [11] Ku Y, Wang L C, Ma C M, et al. Photocatalytic oxidation of Reactive Red 22 in aqueous solution using La2Ti2O7 photocatalyst[J]. Water Air Soil Poll, 2011, 215: 97-103
    [12] Karim A B, Mounir B, Hachkar M, et al. Removal of Basic Red 46 dye from aqueous solution by adsorption onto Moroccan clay[J]. J Hazard Mater, 2009, 168 (1):304-309
    [13] Wu C H. Adsorption of reactive dye onto carbon nanotubes:Equilibrium, kinetics and thermodynamics[J]. Journal of Hazardous Materials,2007, 144: 93-100
    [14] Long R Q, Yang R T. Carbon nanotubes as superior sorbent for dioxin removal[J]. J Am Chem Soc, 2001, 123: 2058-2059
    [15] Fraczek-Szczypta A, Menaszek E, Blazewicz S. Some observations on carbon nanotubes susceptibility to cell phagocytosis[J]. J Nanomater, 2011, doi: 10.1155/2011/473516
    [16] Ngomsik A F, Bee A, Draye M, et al. Magnetic nano- and microparticles for metal removal and environmental applications: a review[J]. Comptes Rendus Chimie, 2005, 8(6/7): 963-970
    [17] Li W W, Gao C, Qian H F, et al. Multiamino-functionalized carbon nanotubes and their applications in loading quantum dots and magnetic nanoparticles[J]. J Mater Chem, 2006, 16 (19): 1852-1859
    [18] Korneva G, Ye H H, Gogotsi Y, et al. Carbon nanotubes loaded with magnetic particles[J]. Nano Lett, 2005, 5 (5): 879-884
    [19] El-Gendy A A, Ibrahim E M M, Khavrus V O, et al. The synthesis of carbon coated Fe, Co and Ni nanoparticles and an examination of their magnetic properties[J]. Carbon, 2009, 47 (12):2821-2828
    [20] Dahl J A, Maddux B L S, Hutchison J E. Toward greener nanosynthesis[J]. Chem Rev, 2007, 107 (6): 2228-2269
    [21] Stratmann M, Rohwerder M.A pore view of corrosion [J]. Nature, 2001, 410: 420-422
    [22] Onyango M S, Kojima Y, Aoyi O, et al. Adsorption equilibrium modeling and solution chemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeolite F-9[J]. J Colloid Interface Sci, 2004, 279(2): 341-350
    [23] Helfferich F, Ion Exchange[M]. New York: McGraw-Hill Book Co, 1962
    [24] Tahir S S, Rauf N. Removal of cationic dye from aqueous solutions by adsorption onto bentonite clay [J]. Chemosphere,2006, 63(11):1842-1848
  • 加载中
计量
  • 文章访问数:  634
  • HTML全文浏览数:  588
  • PDF下载数:  523
  • 施引文献:  0
出版历程
  • 收稿日期:  2011-09-21

芬顿试剂法制备磁性碳纳米管及其对亚甲基蓝的吸附性能

  • 1.  同济大学污染控制与资源化研究国家重点实验室, 上海, 200092;
  • 2.  上海交通大学环境科学与工程学院, 上海, 200240
基金项目:

国家自然科学基金(21177095)

高等学校博士学科点专项科研基金(20100072110033)

同济大学青年优秀人才培养行动计划(2010KJ026)资助.

摘要: 采用芬顿试剂法在碳纳米管纯化样品表面负载纳米磁性氧化铁颗粒,制备磁性碳纳米管杂化材料(MWCNTs/Fe2O3),该杂化材料具有较高的纳米氧化铁负载率(>50%)和优异的磁性能,制备过程中无需额外添加阳离子,不会对环境造成不利影响.将磁性碳纳米管杂化材料应用于染料废水处理中,结果发现MWCNTs/Fe2O3对亚甲基蓝染料吸附性能较好,吸附后用磁铁易于达到固液分离的效果.吸附性能研究表明,磁性碳纳米管对水溶液中亚甲基蓝的吸附在40 min内吸附容量迅速上升,其值达到最大平衡吸附容量的88%以上,60 min基本达到平衡,吸附过程符合准二级动力学模型(R2>0.999).磁性碳纳米管吸附亚甲基蓝的平衡吸附量qe与亚甲基蓝溶液的平衡浓度Ce的关系满足Langmuir(R2>0.999)、Freundlich(R2>0.97)以及Dubinin-Radushkevich(D-R) (R2>0.96)等温吸附模型.通过Langmuir模型计算可知磁性碳纳米管对亚甲基蓝的最大吸附容量为69.98 mg·g-1,吸附过程为有利吸附,由D-R模型计算结果可以推断MWCNTs/Fe2O3对水溶液中亚甲基蓝的吸附机制以化学吸附为主.

English Abstract

参考文献 (24)

目录

/

返回文章
返回