[1] |
Ghosh U C, Dasgupta M, Debnath S, et al. Studies on management of chromium(Ⅵ)- contaminated industrial waste effluent using hydrous titanium oxide (HTO) [J]. Water, Air, and Soil Pollution, 2003, 143: 245-256
|
[2] |
Rao G P, Lu C, Su F. Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review [J]. Separation and Purification Technology, 2007, 58: 224-231
|
[3] |
Wilkie J A, Hering J G. Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes [J]. Colloids and Surfaces, 1996, 107: 97-110
|
[4] |
Xu Y, Boonfueng T, Axe L, et al. Surface complexation of Pb(Ⅱ) on amorphous iron oxide and manganese oxide spectroscopic and time studies [J]. Journal of Colloid and Interface Science, 2006, 299: 28-40
|
[5] |
Su Q, Pan B C, Wan S L, et al. Use of hydrous manganese dioxide as a potential sorbent for selective removal of lead, cadmium, and zinc ions from water [J]. Journal of Colloid and Interface Science, 2010, 349: 607-612
|
[6] |
Singh T S, Pant K K. Equilibrium, kinetics and thermodynamic studies for adsorption of As(Ⅲ) on activated alumina [J]. Separation and Purification Technology, 2004, 36: 139-147
|
[7] |
Doula M K. Simultaneous removal of Cu, Mn and Zn from drinking water with the use of clinoptilolite and its Fe-modified form [J]. Water Research, 2009, 43: 3659-3672
|
[8] |
Lee S M, Kim W G, Laldawngliana C, et al. Removal behavior of surface modified sand for Cd(Ⅱ) and Cr(Ⅵ) from aqueous solutions [J]. Journal of Chemical and Engineering Data, 2010, 55:3089-3094
|
[9] |
Kubota L T, Gushikem Y. Adsorption of chromium(Ⅵ) by titanium(Ⅳ) oxide coated on a silica gel surface [J]. Analyst March, 1991, 116: 281-283
|
[10] |
Khraisheh M A.M, Al-degs Y S, Mcminn W A.M. Remediation of wastewater containing heavy metals using raw and modified diatomite [J]. Chemical Engineering Journal, 2004, 99: 177-184
|
[11] |
Boonfueng T, Axe L, Xu Y, et al. Nickel and lead sequestration in manganese oxide-coated montmorillonite[J]. Journal of Colloid and Interface Science, 2006, 303: 87-98
|
[12] |
何炳林, 黄文强. 离子交换树脂与吸附树脂 [M]. 上海: 上海科技教育出版社, 1995: 1-142
|
[13] |
Puttamraju P, SenGupta A K. Evidence of tunable on-off sorption behaviors of metal oxide nanoparticles: role of ion exchanger support [J]. Industrial and Engineering Chemistry Research, 2006, 45: 7737-7742
|
[14] |
Pan B J, Qiu H, Pan B C, et al. Highly efficient removal of heavy metals by polymer-supported nanosized hydrated Fe(Ⅲ) oxides: Behavior and XPS study [J]. Water Research, 2010, 44:815-824
|
[15] |
曾双双, 郑明森, 董全峰. 直接还原高锰酸钾制备CNT/MnO2复合材料 [J]. 电池, 2010, 40(3): 121-123
|
[16] |
Zhu Z L, Ma H M, Zhang R H, et al. Removal of cadmium using MnO2 loaded D301 resin [J]. Journal of Environmental Science, 2007, 19: 652-656
|
[17] |
Maliyekkal S M, Lisha K P, Pradeep T. A novel cellulose-manganese oxide hybrid material by in situ soft chemical synthesis and its application for the removal of Pb(Ⅱ) from water [J]. Journal of Hazardous Materials, 2010, 181: 986-995
|
[18] |
Liang S, Teng F, Bulgan G,et al. Effect of phase structure of MnO nanorod catalyst on the activity for CO oxidation [J]. Journal of Physical Chemistry C, 2008, 112: 5307-5315
|
[19] |
Taffarel S R, Rubio J. Removal of Mn2+ from aqueous solution by manganese oxide coated zeolite [J]. Minerals Engineering, 2010, 23:1131-1138
|
[20] |
Su Q, Pan B C, Pan B J, et al. Fabrication of polymer-supported nanosized hydrous manganese dioxide (HMO) for enhanced lead removal from waters [J]. Science of the Total Environment, 2009, 407: 5471-5477
|
[21] |
Qin Q D, Wang Q Q, Fu D F, et al. An efficient approach for Pb(Ⅱ) and Cd(Ⅱ) removal using manganese dioxide formed in situ [J]. Chemical Engineering Journal, 2011, 172: 68-74
|
[22] |
Zhang Q R, Du W, Pan B C, et al. A comparative study on Pb2+, Zn2+ and Cd2+ sorption onto zirconium phosphate supported by a cation exchanger [J]. Journal of Hazardous Materials, 2008, 152: 469-475
|
[23] |
薛庆锋. 土壤复合污染体系中重金属的行为研究 . 杭州: 浙江大学硕士学位论文, 2008
|
[24] |
李华伟, 郑寿荣, 许昭怡,等. 13X分子筛去除水中重金属离子的研究 [J]. 离子交换与吸附, 2007, 23(5): 408-414
|
[25] |
莫瑜, 潘蓉, 黄海伟,等. 毛木耳和白木耳子实体对Cd(Ⅱ)、Cu(Ⅱ)、Pb(Ⅱ)和Zn(Ⅱ)的吸附特性研究 [J]. 环境科学, 2010, 31(7): 1566-1574
|
[26] |
Gao Z M, Bandosz T J, Zhao Z B, et al. Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes [J]. Journal of Hazardous Materials, 2009, 167: 357-365
|
[27] |
Qin F, Wen B, Shan X Q, et al. Mechanisms of competitive adsorption of Pb, Cu, and Cd on peat [J]. Environmental Pollution, 2006, 144: 669-680
|