[1] CAMPOY-QUILES M,FERENCZI T,AGOSTINELLI T,et al. Morphology evolution via self-organization and lateral and vertical diffusion in polymer: fullerene solar cell blends[J]. Nature Materials,2008,7(2): 158-164.
[2] SIMON F,PETERLIK H,PFEIFFER R,et al. Fullerene release from the inside of carbon nanotubes: a possible route toward drug delivery[J]. Chemical Physics Letters,2007,445(4-6): 288-292.
[3] MAUTER M S,MENACHEM E. Environmental applications of carbon-based nanomaterials[J]. Environmental Science & Technology,2008,42(16): 5843-5859.
[4] TAO X J,YU Y X,FORTNER J D,et al. Effects of aqueous stable fullerene nanocrystal (nC60) on Scenedesmus obliquus: Evaluation of the sub-lethal photosynthetic responses and inhibition mechanism[J]. Chemosphere,2015,122: 162-167.
[5] SANTOS S,DINIS A,RODRIGUES D,et al. Studies on the toxicity of an aqueous suspension of C60 nanoparticles using a bacterium (gen. Bacillus) and an aquatic plant (Lemna gibba) as in vitro model systems[J]. Aquatic Toxicology,2013,142-143: 347-354.
[6] 党颁. 碳纳米管和富勒烯对植物体系的生物学效应比较研究[D]. 北京:中国科学院研究生院学位论文,2012. DANG B. Comparison of the biological effect of carbon nanotubes and fullerene on plant system[D].Beijing: The Graduate College of Chinese Academy of Sciences,2012(in Chinese).
[7] BEGUM P,IKHTIARI R,FUGETSU B. Potential impact of multi-walled carbon nanotubes exposure to the seedling stage of selected plant species[J]. Nanomaterials,2014,4(2): 203-221.
[8] KHODAKOVSKAYA M,DERVISHI E,MAHMOOD M,et al. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth[J]. ACS Nano,2009,3(10): 3221-3227.
[9] KOLE C,KOLE P,RANDUNU KM,ET AL. Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass,fruit yield and phytomedicine content in bitter melon(Momordica charantia)[J]. BMC Biotechnology,2013,13: 37.
[10] CANAS J E,LONG M,NATIONS S,et al. Effects of functionalized and nonfunctionalized single-walled carbon-nanotubes on root elongation of select crop species[J]. Environmental Toxicology Chemistry,2008,27(9): 1922-1931.
[11] RICO C M,MAJUMDAR S,DUARTE-GARDEA M,et al. Interaction of nanoparticles with edible plants and their possible implications in the food chain[J]. Journal of Agricultural & Food Chemistry,2011,59(8): 3485-3498.
[12] GAI K,SHI B Y,YAN X M,et al. Effect of dispersion on adsorption of atrazine by aqueous suspensions of fullerenes[J]. Environmental Science & Technology,2011,45(14): 5959-5965.
[13] ZHANG L L,WANG L L,ZHANG P,et al. Facilitated transport of 2,2',5,5'-polychlorinated biphenyl and phenanthrene by fullerene nanoparticles through sandy soil columns[J]. Environmental Science & Technology,2011,45(4): 1341-1348.
[14] DUNCAN L K,JINSCHEK J R,VIKESLAND P J. C60 colloid formation in aqueous systems: Effects of preparation method on size,structure,and surface charge[J]. Environmental Science & Technology,2008,42(1): 173-178.
[15] MA X M,WANG C. Fullerene nanoparticles affect the fate and uptake of trichloroethylenein phytoremediation Systems[J]. Environmental Engineering Science,2010,27(11): 989-992.
[16] ROBERTO T R,JOSEPH H,DENG Y Q,et al. Fullerene-enhanced accumulation of p,p'-DDE in agricultural crop species[J]. Environmental Science & Technology,2012,46(17): 9315-9323.
[17] ROBERTO T R,JOSEPH H,DENG Y Q,et al. Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants[J]. Environmental Science & Technology,2013,47(21):12539-12547
[18] WEI H Y,SONG S J,TIAN H L,et al. Effects of phenanthrene on seed germination and some physiological activities of wheat seedling[J]. Comptes Rendus Biologies,2014,337(2): 95-100.
[19] 高曦,盛月慧,高彦征. 菲、芘对蚕豆的氧化胁迫和DNA损伤[J]. 农业环境科学学报,2014,33(10): 1873-1881. GAO X,SHENG Y H,GAO Y Z. Oxidative stresses and DNA damages in cells of Vicia faba exposed to phenanthrene and pyrene[J]. Journal of Agro-Environment Science,2014,33(10): 1873-1881(in Chinese).
[20] 刘尚杰. 石墨烯对水稻种子萌发及幼苗生长的影响[D]. 荆州: 长江大学学位论文,2013. LIU S J. The effects of graphene on the germination and seedling growth in rice[D].Jingzhou:Yangtze University,2013(in Chinese).
[21] 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社,2006. GAO J F. Plant physiology experiment instruction[M].Beijing: Higher Education Press,2006(in Chinese).
[22] WANG L,HOU L,WANG X,et al. Effects of the preparation method and humic-acid modification on the mobility and contaminant-mobilizing capability of fullerene nanoparticles (nC60)[J]. Environmental science:Processes & Impacts,2014,16(6): 1282-1289.
[23] LIN D H,XING B S. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth[J]. Environmental Pollution,2007,150(2): 243-250.
[24] LIN S J,REPPERT J,HU Q,et al. Uptake,translocation,and transmission of carbon nanomaterials in rice plants[J]. Small,2009,5(10): 1128-1132.
[25] WANG X P,HAN H Y,LIU X Q,et al. Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants[J]. Journal of Nanoparticle Research,2012,14(6): 1-10.
[26] LI J H,GAO Y S,CHEUNG K C,et al. Physiological and biochemical responses of rice (Oryza sativa L.) to phenanthrene and pyrene.[J]. International Journal of Phytoremediation,2008,10(2): 106-118.
[27] LIU H,WEISMAN D,YE Y B,et al. An oxidative stress response to polycyclic aromatic hydrocarbon exposure is rapid and complex in Arabidopsis thaliana[J]. Plant Science,2009,176(3): 375-382.
[28] 薛萌. 萘和芘对水稻生理及产量品质的影响[D]. 南京:南京农业大学学位论文,2011. XUE M. The influence of naphthalene and pyrene on the rice physiological and production[D].Nanjing: Nanjing Agricultural University,2011(in Chinese).
[29] 马丽,何春光,盛连喜,等. 松前水稻(Oryzasativa cv.Matsumae)对土壤菲污染的生理生态响应[J]. 生态环境学报,2010,19(10): 2435-2440. MA L,HE C G,SHENG L X,et al. The physiological and ecological response of Oryzasativa cv.Matsumae to the Phenanthrene(Phe) polluted soils[J]. Ecology and Environmental Sciences,2010,19(10): 2435-2440(in Chinese).
[30] DENG Y Q,WHITE J C,XING B S. Interactions between engineered nanomaterials and agricultural crops: implications for food safety[J]. Journal of Zhejiang Universityence A,2014,15(8):552-572.
[31] 王震宇,于晓莉,高冬梅,等. 人工合成纳米TiO2和MWCNTs对玉米生长及其抗氧化系统的影响[J]. 环境科学,2010,31(2): 480-487. WANG Z Y,YU X L,GAO D M,et al. Effect of nano-rutile Tio2 and multiwalled carbon nanotubes on the growth of maize(Zeamays L.) seedlings and the relevant antioxidant response[J].Environmental Sciences,2010,31(2): 480-487(in Chinese).
[32] BEGUM P,IKHTIARI R,FUGETSU B. Graphene phytotoxicity in the seedling stage of cabbage,tomato,red spinach,and lettuce[J]. Carbon,2011,49(12): 3907-3919.
[33] BEGUM P,FUGETSU B. Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L) and the role of ascorbic acid as an antioxidant[J]. Journal of Hazardous Materials,2012,243: 212-222.