[1] |
王朋超, 孙约兵, 徐应明, 等. 施用磷肥对南方酸性红壤镉生物有效性及土壤酶活性影响[J]. 环境化学, 2016, 35(1): 150-158.
WANG P C, SUN Y B, XU Y M, et al. Effects of phosphorous fertilizers on Cd bioavailability and soil enzyme activities in south acidic red soil[J].Environmental Chemistry, 2016, 35(1): 150-158 (in Chinese).
|
[2] |
徐明岗, 曾希柏, 周世伟, 等. 施肥与土壤重金属污染修复[M]. 北京: 科学出版社, 2014: 51-54. XU M G, ZENG X B, ZHOU S W, et al. Fertilization and remediation of heavy metal pollution in soil[M]. Beijing: Science Press, 2014: 51
-54(in Chinese).
|
[3] |
罗婷. 镁、锌和石灰等物质抑制土壤镉有效性及水稻吸收Cd的研究[D]. 雅安: 四川农业大学, 2013: 40-50. LUO T. Availability of soil cadmium and its uptake by rice as restrained by using magnesium, zinc, lime and their combinations[D]. Ya'an: Sichuan Agricultural University, 2013: 40
-50(in Chinese).
|
[4] |
|
[5] |
FAHAD S, HUSSAIN S, KHAN F, et al. Effects of tire rubber ash and zinc sulfate on crop productivity and cadmium accumulation in five rice cultivars under field conditions[J]. Environmental Science and Pollution Research, 2015, 22(16):12424-12434.
|
[6] |
SAIFULLAH, SARWAR N, BIBI S, et al. Effectiveness of zinc application to minimize cadmium toxicity and accumulation in wheat (Triticum aestivum L.)[J]. Environmental Earth Sciences, 2014, 71(4):1663-1672.
|
[7] |
FAHAD S, HUSSAIN S, SAUD S, et al. Grain cadmium and zinc concentrations in maize influenced by genotypic variations and zinc fertilization[J]. Clean-Soil Air Water, 2015, 43 (10): 1433-1440.
|
[8] |
董如茵, 徐应明, 王林, 等.土施和喷施锌肥对镉低积累油菜吸收镉的影响[J]. 环境科学学报, 2015, 35(8): 2589-2596.
DONG R Y, XU Y M, WANG L, et al. Effects of soil application and foliar spray of zinc fertilizer on cadmium uptake in a pakchoi cultivar with low cadmium accumulation[J]. Acta Scientiae Circumstantiae, 2015, 35(8): 2589-2596 (in Chinese).
|
[9] |
SAIFULLAH, JAVED H, NAEEM A, et al. Timing of foliar Zn application plays a vital rolein minimizing Cd accumulation in wheat[J]. Environmental Science and Pollution Research, 2016,23(16):16432-16439.
|
[10] |
WANG L, XU Y M, SUNY B, et al. Identification of pakchoi cultivars with low cadmium accumulation and soil factors that affect their cadmium uptake and translocation[J]. Frontiers of Environmental Science and Engineering, 2014, 8(6): 877-887.
|
[11] |
王景安, 张福锁, 李春俭. 缺锌对番茄、甜椒生长发育及矿质代谢的影响[J]. 土壤通报, 2001, 32(4): 177-179.
WANG J A, ZHANG F S, LI C J. Growth of tomato and green pepper under zinc-deficiency[J]. Chinese Journal of Soil Science, 2001, 32(4): 177-179 (in Chinese).
|
[12] |
董如茵. 喷施锌肥对镉低积累油菜吸收累积镉的影响及生理生化机理[D]. 北京: 中国农业科学院, 2015: 22-26. DONG R Y. Effects of foliar spray of zinc fertilizer on cadmium uptake in a pakchoi cultivar with low cadmium accumulation and its physiological-biochemical mechanisms[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015: 22
-26(in Chinese).
|
[13] |
韦燕燕. 水稻籽粒中锌生物有效性与调控机制[D]. 杭州: 浙江大学, 2012: 78. WEI Y Y. Zinc bioavailability in rice grain and regulation mechanisms[D]. Hangzhou: Zhejiang University, 2012: 78(in Chinese).
|
[14] |
秦丽, 何永美, 李元, 等. Cd胁迫对续断菊Cd吸收分配及有机酸代谢的影响[J]. 环境化学, 2016, 35(8):1592-1600.
QIN L, HE Y M, LI Y, et al. Effects of Cd stress on uptake and distribution of Cd and the low molecular weight organic acid metabolism in Sonchus asper L. Hill.[J]. Environmental Chemistry, 2016, 35(8):1592-1600(in Chinese).
|
[15] |
CAKMAK. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification?[J]. Plant and Soil, 2008, 302(1): 1-17.
|
[16] |
PHATTARAKULN, RERKASEM B, LI L J, et al. Biofortification of rice grain with zinc through zinc fertilization in different countries[J]. Plant and Soil, 2012, 361(1/2):131-141.
|
[17] |
HART J J, WELCH R M, NORVELL W A, et al. Zinc effects on cadmium accumulation and partitioning in near-isogenic lines of durum wheat that differ in grain cadmium concentration[J]. New Phytologist, 2005, 167(2): 391-401.
|
[18] |
WANG J L, YUAN J G, YANG Z Y, et al. Variation in cadmium accumulation among 30 cultivars and cadmium subcellular distribution in 2 selected cultivars of water spinach (Ipomoea aquatica Forsk.)[J]. Journal of Agricultural and Food Chemistry, 2009, 57(19): 8942-8949.
|
[19] |
WANG J B, SU L Y, YANG J Z, et al. Comparisons of cadmium subcellular distribution and chemical forms between low-Cd and high-Cd accumulation genotypes of watercress(Nasturtium officinale L. R. Br.)[J]. Plant and Soil, 2015, 396(1/2): 325-337.
|
[20] |
XIN J L, HUANG B F, DAI H W, et al. Characterization of cadmium uptake, translocation, and distribution in young seedlings of two hot pepper cultivars that differ in fruit cadmium concentration[J]. Environmental Science and Pollution Research, 2014, 21(12):7449-7456.
|
[21] |
RAMESH S A, SHIN R, EIDE D Jet al. Differential metal selectivity and gene expression of two zinc transporters from rice[J]. Plant Physiology, 2003, 133(1):126-134.
|
[22] |
TAKAHASHI R, ISHIMARU Y, SHIMO H, et al. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice[J]. Plant, Cell & Environment, 2012, 35(11): 1948-1957.
|
[23] |
LEE S, AN G. Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice[J]. Plant, Cell & Environment, 2009, 32(4): 408-416.
|
[24] |
LEE S, KIM S A, LEE J, et al. Zinc deficiency-inducible OsZIP8 encodes a plasma membrane-localized zinc transporter in rice[J]. Molecules and Cells, 2010, 29(6): 551-558.
|
[25] |
YONEYAMA T, ISHIKAWA S, FUJIMAKI S. Route and regulation of zinc, cadmium, and iron transport in rice plants (Oryza sativa L.) during vegetative growth and grain filling: Metal transporters, metal speciation, grain Cd reduction and Zn and Fe biofortification[J].International Journal of Molecular Sciences,2015, 16(8): 19111-19129.
|
[26] |
HASLETT BS, REID R J, RENGEL Z. Zinc mobility in wheat: Uptake and distribution of zinc applied to leaves or roots[J]. Annals of Botany, 2001, 87(3): 379-386.
|
[27] |
陆景陵. 植物营养学(上册)[M]. 第二版. 北京: 中国农业大学出版社, 2003: 77-94. LU J L. Plant nutrition (book one)[M]. 2nd edition. Beijing: China Agricultural University Press, 2003
: 77-94(in Chinese).
|
[28] |
SASAKI A, YAMAJI N, YOKOSHO K, et al. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J]. The Plant Cell, 2012, 24(5): 2155-2167.
|
[29] |
高超, 王忆, 马丽, 等. 不同铁营养状态对小金海棠镉吸收的影响[J]. 中国农业大学学报, 2011, 16(6): 83-87.
GAO C, WANG Y, MA L, et al. Effect of Fe nutrition status on Cd2+ influx on root surface of Malus xiaojinensis[J]. Journal of China Agricultural University, 2011, 16(6): 83-87(in Chinese).
|
[30] |
魏波. 铜锌对蒙山茶叶品质的影响[D]. 雅安: 四川农业大学, 2009: 31-34. WEI B. Effect of applying copper and zinc on the quality of Mengshan tea[D]. Ya'an: Sichuan Agricultural University, 2009: 31
-34(in Chinese).
|
[31] |
WILLIAMS L E, MILLS R F. P1B-ATPases- an ancient family of transition metal pumps with diverse functions in plants[J]. Trends in Plant Science, 2005, 10(10):491-502.
|
[32] |
WINTZ H, FOX T, WU YY, et al. Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis[J]. Journal of Biological Chemistry, 2003, 278(48):47644-47653.
|
[33] |
LEE S, KIM Y Y, LEE Y, et al. Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein[J]. Plant physiology, 2007, 145(3): 831-842.
|