不同锌营养下喷施锌肥对油菜生长和元素含量的影响

代晶晶, 徐应明, 王林, 李然, 孙约兵, 梁学峰. 不同锌营养下喷施锌肥对油菜生长和元素含量的影响[J]. 环境化学, 2017, 36(5): 1017-1025. doi: 10.7524/j.issn.0254-6108.2017.05.2016101201
引用本文: 代晶晶, 徐应明, 王林, 李然, 孙约兵, 梁学峰. 不同锌营养下喷施锌肥对油菜生长和元素含量的影响[J]. 环境化学, 2017, 36(5): 1017-1025. doi: 10.7524/j.issn.0254-6108.2017.05.2016101201
DAI Jingjing, XU Yingming, WANG Lin, LI Ran, SUN Yuebing, LIANG Xuefeng. Effect of foliar zinc application on growth and element concentrations of pakchoi under different zinc nutrition status[J]. Environmental Chemistry, 2017, 36(5): 1017-1025. doi: 10.7524/j.issn.0254-6108.2017.05.2016101201
Citation: DAI Jingjing, XU Yingming, WANG Lin, LI Ran, SUN Yuebing, LIANG Xuefeng. Effect of foliar zinc application on growth and element concentrations of pakchoi under different zinc nutrition status[J]. Environmental Chemistry, 2017, 36(5): 1017-1025. doi: 10.7524/j.issn.0254-6108.2017.05.2016101201

不同锌营养下喷施锌肥对油菜生长和元素含量的影响

  • 基金项目:

    天津市自然科学基金(14JCYBJC30300)和国家自然科学基金(41571322)资助

Effect of foliar zinc application on growth and element concentrations of pakchoi under different zinc nutrition status

  • Fund Project: Supported by Natural Science Foundation of Tianjin (14JCYBJC30300) and National Natural Science Foundation of China (41571322)
  • 摘要: 采用水培试验,研究Zn缺乏和正常条件下,喷施不同浓度的ZnSO4和ZnNa2EDTA对两种油菜地上部生物量和Cd、Zn、Fe、Mn、Cu等元素含量的影响,并通过设置喷施Na2EDTA处理和分析Cd在油菜体内的累积分配规律来揭示喷施Zn肥降低油菜Cd含量的作用机理.结果表明,正常Zn营养下油菜地上部生物量显著高于Zn缺乏条件下,不同Zn营养条件下喷施Zn肥对油菜地上部生物量都没有显著影响.正常Zn营养下油菜地上部Cd含量极显著低于Zn缺乏条件下;正常Zn营养下喷施ZnSO4使得普通油菜寒绿的地上部Cd含量显著低于对照处理,降幅为27.22%;Zn缺乏时喷施低浓度和高浓度ZnNa2EDTA使得Cd低积累油菜华骏的地上部Cd含量显著降低,与对照相比分别减少28.70%和26.94%,喷施ZnNa2EDTA降低油菜地上部Cd含量的作用与EDTA成分没有密切关系;喷施Zn肥主要通过抑制根部Cd吸收来降低油菜的地上部Cd含量.正常Zn营养下油菜地上部Zn含量极显著高于Zn缺乏条件下;喷施Zn肥显著提高油菜地上部和根部Zn含量.正常Zn营养下油菜地上部Fe含量极显著低于Zn缺乏条件下,Zn营养条件对油菜地上部Mn和Cu含量没有显著影响;不同Zn营养条件下喷施Zn肥可使油菜地上部Fe、Mn、Cu含量显著升高或降低,但是并没有显著影响油菜微量元素的营养平衡.
  • 加载中
  • [1] 王朋超, 孙约兵, 徐应明, 等. 施用磷肥对南方酸性红壤镉生物有效性及土壤酶活性影响[J]. 环境化学, 2016, 35(1): 150-158.

    WANG P C, SUN Y B, XU Y M, et al. Effects of phosphorous fertilizers on Cd bioavailability and soil enzyme activities in south acidic red soil[J].Environmental Chemistry, 2016, 35(1): 150-158 (in Chinese).

    [2] 徐明岗, 曾希柏, 周世伟, 等. 施肥与土壤重金属污染修复[M]. 北京: 科学出版社, 2014: 51-54. XU M G, ZENG X B, ZHOU S W, et al. Fertilization and remediation of heavy metal pollution in soil[M]. Beijing: Science Press, 2014: 51

    -54(in Chinese).

    [3] 罗婷. 镁、锌和石灰等物质抑制土壤镉有效性及水稻吸收Cd的研究[D]. 雅安: 四川农业大学, 2013: 40-50. LUO T. Availability of soil cadmium and its uptake by rice as restrained by using magnesium, zinc, lime and their combinations[D]. Ya'an: Sichuan Agricultural University, 2013: 40

    -50(in Chinese).

    [4]
    [5] FAHAD S, HUSSAIN S, KHAN F, et al. Effects of tire rubber ash and zinc sulfate on crop productivity and cadmium accumulation in five rice cultivars under field conditions[J]. Environmental Science and Pollution Research, 2015, 22(16):12424-12434.
    [6] SAIFULLAH, SARWAR N, BIBI S, et al. Effectiveness of zinc application to minimize cadmium toxicity and accumulation in wheat (Triticum aestivum L.)[J]. Environmental Earth Sciences, 2014, 71(4):1663-1672.
    [7] FAHAD S, HUSSAIN S, SAUD S, et al. Grain cadmium and zinc concentrations in maize influenced by genotypic variations and zinc fertilization[J]. Clean-Soil Air Water, 2015, 43 (10): 1433-1440.
    [8] 董如茵, 徐应明, 王林, 等.土施和喷施锌肥对镉低积累油菜吸收镉的影响[J]. 环境科学学报, 2015, 35(8): 2589-2596.

    DONG R Y, XU Y M, WANG L, et al. Effects of soil application and foliar spray of zinc fertilizer on cadmium uptake in a pakchoi cultivar with low cadmium accumulation[J]. Acta Scientiae Circumstantiae, 2015, 35(8): 2589-2596 (in Chinese).

    [9] SAIFULLAH, JAVED H, NAEEM A, et al. Timing of foliar Zn application plays a vital rolein minimizing Cd accumulation in wheat[J]. Environmental Science and Pollution Research, 2016,23(16):16432-16439.
    [10] WANG L, XU Y M, SUNY B, et al. Identification of pakchoi cultivars with low cadmium accumulation and soil factors that affect their cadmium uptake and translocation[J]. Frontiers of Environmental Science and Engineering, 2014, 8(6): 877-887.
    [11] 王景安, 张福锁, 李春俭. 缺锌对番茄、甜椒生长发育及矿质代谢的影响[J]. 土壤通报, 2001, 32(4): 177-179.

    WANG J A, ZHANG F S, LI C J. Growth of tomato and green pepper under zinc-deficiency[J]. Chinese Journal of Soil Science, 2001, 32(4): 177-179 (in Chinese).

    [12] 董如茵. 喷施锌肥对镉低积累油菜吸收累积镉的影响及生理生化机理[D]. 北京: 中国农业科学院, 2015: 22-26. DONG R Y. Effects of foliar spray of zinc fertilizer on cadmium uptake in a pakchoi cultivar with low cadmium accumulation and its physiological-biochemical mechanisms[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015: 22

    -26(in Chinese).

    [13] 韦燕燕. 水稻籽粒中锌生物有效性与调控机制[D]. 杭州: 浙江大学, 2012: 78. WEI Y Y. Zinc bioavailability in rice grain and regulation mechanisms[D]. Hangzhou: Zhejiang University, 2012: 78(in Chinese).
    [14] 秦丽, 何永美, 李元, 等. Cd胁迫对续断菊Cd吸收分配及有机酸代谢的影响[J]. 环境化学, 2016, 35(8):1592-1600.

    QIN L, HE Y M, LI Y, et al. Effects of Cd stress on uptake and distribution of Cd and the low molecular weight organic acid metabolism in Sonchus asper L. Hill.[J]. Environmental Chemistry, 2016, 35(8):1592-1600(in Chinese).

    [15] CAKMAK. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification?[J]. Plant and Soil, 2008, 302(1): 1-17.
    [16] PHATTARAKULN, RERKASEM B, LI L J, et al. Biofortification of rice grain with zinc through zinc fertilization in different countries[J]. Plant and Soil, 2012, 361(1/2):131-141.
    [17] HART J J, WELCH R M, NORVELL W A, et al. Zinc effects on cadmium accumulation and partitioning in near-isogenic lines of durum wheat that differ in grain cadmium concentration[J]. New Phytologist, 2005, 167(2): 391-401.
    [18] WANG J L, YUAN J G, YANG Z Y, et al. Variation in cadmium accumulation among 30 cultivars and cadmium subcellular distribution in 2 selected cultivars of water spinach (Ipomoea aquatica Forsk.)[J]. Journal of Agricultural and Food Chemistry, 2009, 57(19): 8942-8949.
    [19] WANG J B, SU L Y, YANG J Z, et al. Comparisons of cadmium subcellular distribution and chemical forms between low-Cd and high-Cd accumulation genotypes of watercress(Nasturtium officinale L. R. Br.)[J]. Plant and Soil, 2015, 396(1/2): 325-337.
    [20] XIN J L, HUANG B F, DAI H W, et al. Characterization of cadmium uptake, translocation, and distribution in young seedlings of two hot pepper cultivars that differ in fruit cadmium concentration[J]. Environmental Science and Pollution Research, 2014, 21(12):7449-7456.
    [21] RAMESH S A, SHIN R, EIDE D Jet al. Differential metal selectivity and gene expression of two zinc transporters from rice[J]. Plant Physiology, 2003, 133(1):126-134.
    [22] TAKAHASHI R, ISHIMARU Y, SHIMO H, et al. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice[J]. Plant, Cell & Environment, 2012, 35(11): 1948-1957.
    [23] LEE S, AN G. Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice[J]. Plant, Cell & Environment, 2009, 32(4): 408-416.
    [24] LEE S, KIM S A, LEE J, et al. Zinc deficiency-inducible OsZIP8 encodes a plasma membrane-localized zinc transporter in rice[J]. Molecules and Cells, 2010, 29(6): 551-558.
    [25] YONEYAMA T, ISHIKAWA S, FUJIMAKI S. Route and regulation of zinc, cadmium, and iron transport in rice plants (Oryza sativa L.) during vegetative growth and grain filling: Metal transporters, metal speciation, grain Cd reduction and Zn and Fe biofortification[J].International Journal of Molecular Sciences,2015, 16(8): 19111-19129.
    [26] HASLETT BS, REID R J, RENGEL Z. Zinc mobility in wheat: Uptake and distribution of zinc applied to leaves or roots[J]. Annals of Botany, 2001, 87(3): 379-386.
    [27] 陆景陵. 植物营养学(上册)[M]. 第二版. 北京: 中国农业大学出版社, 2003: 77-94. LU J L. Plant nutrition (book one)[M]. 2nd edition. Beijing: China Agricultural University Press, 2003

    : 77-94(in Chinese).

    [28] SASAKI A, YAMAJI N, YOKOSHO K, et al. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J]. The Plant Cell, 2012, 24(5): 2155-2167.
    [29] 高超, 王忆, 马丽, 等. 不同铁营养状态对小金海棠镉吸收的影响[J]. 中国农业大学学报, 2011, 16(6): 83-87.

    GAO C, WANG Y, MA L, et al. Effect of Fe nutrition status on Cd2+ influx on root surface of Malus xiaojinensis[J]. Journal of China Agricultural University, 2011, 16(6): 83-87(in Chinese).

    [30] 魏波. 铜锌对蒙山茶叶品质的影响[D]. 雅安: 四川农业大学, 2009: 31-34. WEI B. Effect of applying copper and zinc on the quality of Mengshan tea[D]. Ya'an: Sichuan Agricultural University, 2009: 31

    -34(in Chinese).

    [31] WILLIAMS L E, MILLS R F. P1B-ATPases- an ancient family of transition metal pumps with diverse functions in plants[J]. Trends in Plant Science, 2005, 10(10):491-502.
    [32] WINTZ H, FOX T, WU YY, et al. Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis[J]. Journal of Biological Chemistry, 2003, 278(48):47644-47653.
    [33] LEE S, KIM Y Y, LEE Y, et al. Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein[J]. Plant physiology, 2007, 145(3): 831-842.
  • 加载中
计量
  • 文章访问数:  1324
  • HTML全文浏览数:  1265
  • PDF下载数:  308
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-10-12
  • 刊出日期:  2017-05-15
代晶晶, 徐应明, 王林, 李然, 孙约兵, 梁学峰. 不同锌营养下喷施锌肥对油菜生长和元素含量的影响[J]. 环境化学, 2017, 36(5): 1017-1025. doi: 10.7524/j.issn.0254-6108.2017.05.2016101201
引用本文: 代晶晶, 徐应明, 王林, 李然, 孙约兵, 梁学峰. 不同锌营养下喷施锌肥对油菜生长和元素含量的影响[J]. 环境化学, 2017, 36(5): 1017-1025. doi: 10.7524/j.issn.0254-6108.2017.05.2016101201
DAI Jingjing, XU Yingming, WANG Lin, LI Ran, SUN Yuebing, LIANG Xuefeng. Effect of foliar zinc application on growth and element concentrations of pakchoi under different zinc nutrition status[J]. Environmental Chemistry, 2017, 36(5): 1017-1025. doi: 10.7524/j.issn.0254-6108.2017.05.2016101201
Citation: DAI Jingjing, XU Yingming, WANG Lin, LI Ran, SUN Yuebing, LIANG Xuefeng. Effect of foliar zinc application on growth and element concentrations of pakchoi under different zinc nutrition status[J]. Environmental Chemistry, 2017, 36(5): 1017-1025. doi: 10.7524/j.issn.0254-6108.2017.05.2016101201

不同锌营养下喷施锌肥对油菜生长和元素含量的影响

  • 1.  沈阳农业大学土地与环境学院, 沈阳, 110161;
  • 2.  农业部环境保护科研监测所, 天津, 300191;
  • 3.  农业部产地环境质量重点实验室, 天津, 300191
基金项目:

天津市自然科学基金(14JCYBJC30300)和国家自然科学基金(41571322)资助

摘要: 采用水培试验,研究Zn缺乏和正常条件下,喷施不同浓度的ZnSO4和ZnNa2EDTA对两种油菜地上部生物量和Cd、Zn、Fe、Mn、Cu等元素含量的影响,并通过设置喷施Na2EDTA处理和分析Cd在油菜体内的累积分配规律来揭示喷施Zn肥降低油菜Cd含量的作用机理.结果表明,正常Zn营养下油菜地上部生物量显著高于Zn缺乏条件下,不同Zn营养条件下喷施Zn肥对油菜地上部生物量都没有显著影响.正常Zn营养下油菜地上部Cd含量极显著低于Zn缺乏条件下;正常Zn营养下喷施ZnSO4使得普通油菜寒绿的地上部Cd含量显著低于对照处理,降幅为27.22%;Zn缺乏时喷施低浓度和高浓度ZnNa2EDTA使得Cd低积累油菜华骏的地上部Cd含量显著降低,与对照相比分别减少28.70%和26.94%,喷施ZnNa2EDTA降低油菜地上部Cd含量的作用与EDTA成分没有密切关系;喷施Zn肥主要通过抑制根部Cd吸收来降低油菜的地上部Cd含量.正常Zn营养下油菜地上部Zn含量极显著高于Zn缺乏条件下;喷施Zn肥显著提高油菜地上部和根部Zn含量.正常Zn营养下油菜地上部Fe含量极显著低于Zn缺乏条件下,Zn营养条件对油菜地上部Mn和Cu含量没有显著影响;不同Zn营养条件下喷施Zn肥可使油菜地上部Fe、Mn、Cu含量显著升高或降低,但是并没有显著影响油菜微量元素的营养平衡.

English Abstract

参考文献 (33)

返回顶部

目录

/

返回文章
返回