[1] |
GOLDING G R, KELLY C A, SPARLING R, et al. Evaluation of mercury toxicity as a predictor of mercury bioavailability [J]. Environmental Science & Technology, 2007, 41: 5685-5692.
|
[2] |
LI H L, WU C Y, LI Y, et al. Role of flue gas components in mercury oxidation over TiO2 supported MnO<i>x-CeO2 mixed-oxide at low temperature [J]. Journal of Hazardous Materials, 2012, 243: 117-123.
|
[3] |
WANG S X, ZHANG L, WANG L, et al. A review of atmospheric mercury emissions, pollution and control in China [J]. Frontiers of Environmental Science & Engineering, 2014, 8 (5): 631-649.
|
[4] |
ZHU C Y, TIAN H Z, CHENG K, et al. Potentials of whole process control of heavy metals emissions from coal-fired power plants in China [J]. Journal of Cleaner Production, 2015, 114: 343-351.
|
[5] |
孙阳昭, 陈扬, 蓝虹, 等. 中国汞污染的来源、成因及控制技术路径分析 [J]. 环境化学, 2013, 32 (6): 937-942.
SUN Y Z, CHEN Y, LAN H, et al. Study on pollution sources,cause of mercury pollution and its control technical roadmap in China [J]. Environmental Chemistry, 2013, 32 (6): 937-942 (in Chinese).
|
[6] |
WANG J, WANG W H, XU W, et al. Mercury removals by existing pollutants control devices of four coal-fired power plants in China [J]. Journal of Environmental Sciences, 2011, 23 (11): 1839-1844.
|
[7] |
ZHOU Z J, LIU X W, ZHAO B, et al. Effects of existing energy saving and air pollution control devices on mercury removal in coal-fired power plants [J]. Fuel Processing Technology, 2015, 131: 99-108.
|
[8] |
刘晶, 刘迎晖, 贾小红, 等. 燃煤烟气中汞形态分析的实验研究 [J]. 环境化学, 2003, 22 (2): 172-176.
LIU J, LIU Y H, JIA X H, et al. Mercury speciation in coal fired flue gas [J]. Environmental Chemistry, 2003, 22 (2): 172-176 (in Chinese).
|
[9] |
SJOSTROM S, DYRHAM M, BUSTARD C, et al. Activated carbon injection for mercury control: Overview [J]. Fuel, 2010, 89: 1320-1322.
|
[10] |
ANCORA M P, ZHANG L, WANG S X, et al. Economic analysis of atmospheric mercury emission control for coal-fired power plants in China [J]. Journal of Environmental Sciences, 2015, 33: 125-134.
|
[11] |
ALPTEKIN G O, DUBOVIK M, CESARIO M, et al. Non-carbon sorbents for mercury removal from flue gases [J]. Powder Technology, 2008, 180 (1/2): 35-38.
|
[12] |
LI R J, ZHOU J S, HU C X, et al. Application of novel sorbents for mercury vapor removal from simulated flue gases [J]. Chinese Society of Electrical Engineering, 2007, 2: 48-53.
|
[13] |
DING F, ZHAO Y C, MI L L, et al. Removal of gas-phase elemental mercury in flue gas by inorganic chemically promoted natural mineral sorbents [J]. Industrial & Engineering Chemistry Research, 2012, 51 (2): 3039-3047.
|
[14] |
刘芳芳, 张军营, 赵永椿, 等. 金属氧化物改性凹凸棒石脱除烟气中的单质汞 [J]. 燃煤科学与技术, 2014, 20 (6): 553-557.
LIU F F, ZHANG J Y, ZHAO Y C, et al. Mercury removal from flue gas by metal oxide-loaded attapulgite mineral sorbent [J]. Journal of Combustion Science and Technology, 2014, 20 (6): 553-557 (in Chinese).
|
[15] |
CAO F, SU S, XIANG J, et al. Density functional study of adsorption properties of NO and NH3 over CuO/γ-Al2O3 catalyst [J]. Applied Surface Science, 2012, 261: 659-664.
|
[16] |
WANG J W, KONG X J, DU R B, et al. Removal of vapor-phase elemental mercury over a CuO/AC catalyst [J]. Advanced Materials Research, 2013, 610: 64-67.
|
[17] |
DU W, YIN L B, ZHOU Y Q, et al. Performance of CuOx-neutral Al2O3 sorbents on mercury removal from simulated coal combustion flue gas [J]. Fuel Processing Technology, 2015, 131: 403-408.
|
[18] |
BLOOM N, PREUS E, KATON J. Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils [J]. Analytica Chimica Acta, 2003, 479: 233-248.
|
[19] |
LEE S S, LEE J Y, KHANG S J, et al. Modeling of mercury oxidation and adsorption by cupric chloride-impregnated carbons sorbents [J]. Industrial and Engineering Chemistry Research, 2009, 48: 9049-9053.
|
[20] |
ZHAO B, YI H H, TANG X L, et al. Copper modified activated coke for mercury removal from coal-fired flue gas [J]. Chemical Engineering Journal, 2016, 286: 585-593.
|
[21] |
YAMAGUCHI A, AKIHO H, ITO S. Mercury oxidation by copper oxides in combustion flue gases [J]. Powder Technology, 2008, 180: 222-226.
|
[22] |
WU S J, UDDIN M, NAGANO S, et al. Fundamental study on decomposition characteristics of mercury compounds over solid powder by temperature-programmed decomposition desorption mass spectrometry [J]. Energy Fuels, 2011, 25: 144-153.
|
[23] |
RUMAYOR M, DIAZ-SOMOANO M, LÓPEZ-ANTÓN M A, et al. Temperature programmed desorption as a tool for the identification of mercury fate in wet-desulphurization systems [J]. Fuel, 2015, 148: 98-103.
|
[24] |
XU W Q, WANG H R, ZHOU X, et al. CuO/TiO2 catalysts for gas-phase Hg0 catalytic oxidation [J]. Chemical Engineering Journal, 2014, 243: 380-385.
|
[25] |
WANG J W, YANG J L, LIU Z Y. Gas-phase elemental mercury capture by a V2O5/AC catalyst [J]. Fuel Processing Technology, 2010, 91 (6): 676-680.
|
[26] |
向文娟. 氧化铜对燃煤烟气汞的气固吸附机理研究 [D]. 武汉:华中科技大学, 2012. XIANG W J. Adsorption mechanism of mercury species from coal-fired flue gas on copper oxide surface [D]. Wuhan: Huazhong University of Science and Technology, 2012 (in Chinese).
|
[27] |
王钧伟, 杨建丽, 刘振宇. V2O5/AC在含SO2气氛中对气态Hg0的吸附脱除研究 [J]. 环境科学, 2009, 30 (12): 3455-3460.
WANG J W, YANG J L, LIU Z Y. Adsorption and removal of gas-phase Hg0 over a V2O5/AC catalyst in the presence of SO2 [J]. Environmental Science, 2009, 30 (12): 3455-3460 (in Chinese).
|
[28] |
MEI Z J, SHEN Z M, ZOHA Q J, et al. Removal and recovery of gas-phase element mercury by mental oxide-loaded activated carbon [J]. Journal of Hazardous Materials, 2008, 152 (2): 721-729.
|
[29] |
王钧伟, 陈培, 刘瑞卿, 等. 粉煤灰负载Fe2O3脱除气态单质汞的试验研究 [J]. 环境科学学报, 2014, 34 (12): 3152-3157.
WANG J W, CHEN P, LIU R Q, et al. Hg0 removal by a fly ash-supported Fe2O3 catalyst [J]. Acta Scientiae Circumstantiae, 2014, 34 (12): 3152-3157 (in Chinese).
|