凹凸棒石负载CuO催化剂脱除气态Hg0
Removal of vapor-phase Hg0 over a CuO/PG catalyst
-
摘要: 利用固定床反应器在模拟烟气条件下研究了凹凸棒石(PG)负载CuO催化剂(CuO/PG)对气态Hg0的脱除.考察了CuO负载量、反应温度、烟气成分、SO2浓度以及空速等对CuO/PG脱除Hg0的影响,并利用逐级化学提取和程序升温脱附实验分析了CuO/PG上吸附Hg的形态.结果表明,CuO/PG对Hg0具有较高的脱除能力,明显高于载体PG,且随CuO负载量的增加而增强(1%—8%);在150—250 ℃温度范围内,温度升高,CuO/PG对Hg0的脱除能力降低;HCl对CuO/PG脱除Hg0具有显著的促进作用,O2具有促进作用,H2O和SO2具有抑制作用,NO的作用不明显;在6000—15000 h-1空速范围内,空速降低,CuO/PG表现出了更好的脱除Hg0的能力.逐级化学提取和程序升温脱附实验结果证实,CuO/PG对Hg0的脱除是吸附和催化氧化的共同作用,Hg0被氧化为Hg2+的化合物并吸附在CuO/PG上.Abstract: Removal of vapor-phase Hg0 over a palygorskite (PG) supported CuO catalyst (CuO/PG) was studied in a fixed-bed reactor in simulated flue gas. The influence of CuO loading, temperature, flue gas components, SO2 concentration and space velocity on Hg0 removal was investigated, and the Hg adsorbed over CuO/PG was also characterized. It was found that CuO/PG catalyst had a much higher Hg0 removal capability than that of PG, which increased with CuO loading (1%—8%). CuO/PG showed a high Hg0 removal capability in the temperature range of 150—250 ℃ and space velocity range of 6000—15000 h-1, and a lower temperature or space velocity was benificial for Hg0 removal. HCl and O2 had a positive effect on Hg0 removal over CuO/PG while SO2 and H2O showed an inhibition effect. Sequential chemical extraction and temperature programmed desorption experiments confirmed that Hg0 removal over CuO/PG was the combined effect of oxidation and adsorption, in which the catalytic oxidation activity of CuO played a crucial role.
-
Key words:
- palygorskite /
- CuO /
- Hg0 /
- adsorption /
- catalytic oxidation.
-
-
[1] GOLDING G R, KELLY C A, SPARLING R, et al. Evaluation of mercury toxicity as a predictor of mercury bioavailability [J]. Environmental Science & Technology, 2007, 41: 5685-5692. [2] LI H L, WU C Y, LI Y, et al. Role of flue gas components in mercury oxidation over TiO2 supported MnO<i>x-CeO2 mixed-oxide at low temperature [J]. Journal of Hazardous Materials, 2012, 243: 117-123. [3] WANG S X, ZHANG L, WANG L, et al. A review of atmospheric mercury emissions, pollution and control in China [J]. Frontiers of Environmental Science & Engineering, 2014, 8 (5): 631-649. [4] ZHU C Y, TIAN H Z, CHENG K, et al. Potentials of whole process control of heavy metals emissions from coal-fired power plants in China [J]. Journal of Cleaner Production, 2015, 114: 343-351. [5] 孙阳昭, 陈扬, 蓝虹, 等. 中国汞污染的来源、成因及控制技术路径分析 [J]. 环境化学, 2013, 32 (6): 937-942. SUN Y Z, CHEN Y, LAN H, et al. Study on pollution sources,cause of mercury pollution and its control technical roadmap in China [J]. Environmental Chemistry, 2013, 32 (6): 937-942 (in Chinese).
[6] WANG J, WANG W H, XU W, et al. Mercury removals by existing pollutants control devices of four coal-fired power plants in China [J]. Journal of Environmental Sciences, 2011, 23 (11): 1839-1844. [7] ZHOU Z J, LIU X W, ZHAO B, et al. Effects of existing energy saving and air pollution control devices on mercury removal in coal-fired power plants [J]. Fuel Processing Technology, 2015, 131: 99-108. [8] 刘晶, 刘迎晖, 贾小红, 等. 燃煤烟气中汞形态分析的实验研究 [J]. 环境化学, 2003, 22 (2): 172-176. LIU J, LIU Y H, JIA X H, et al. Mercury speciation in coal fired flue gas [J]. Environmental Chemistry, 2003, 22 (2): 172-176 (in Chinese).
[9] SJOSTROM S, DYRHAM M, BUSTARD C, et al. Activated carbon injection for mercury control: Overview [J]. Fuel, 2010, 89: 1320-1322. [10] ANCORA M P, ZHANG L, WANG S X, et al. Economic analysis of atmospheric mercury emission control for coal-fired power plants in China [J]. Journal of Environmental Sciences, 2015, 33: 125-134. [11] ALPTEKIN G O, DUBOVIK M, CESARIO M, et al. Non-carbon sorbents for mercury removal from flue gases [J]. Powder Technology, 2008, 180 (1/2): 35-38. [12] LI R J, ZHOU J S, HU C X, et al. Application of novel sorbents for mercury vapor removal from simulated flue gases [J]. Chinese Society of Electrical Engineering, 2007, 2: 48-53. [13] DING F, ZHAO Y C, MI L L, et al. Removal of gas-phase elemental mercury in flue gas by inorganic chemically promoted natural mineral sorbents [J]. Industrial & Engineering Chemistry Research, 2012, 51 (2): 3039-3047. [14] 刘芳芳, 张军营, 赵永椿, 等. 金属氧化物改性凹凸棒石脱除烟气中的单质汞 [J]. 燃煤科学与技术, 2014, 20 (6): 553-557. LIU F F, ZHANG J Y, ZHAO Y C, et al. Mercury removal from flue gas by metal oxide-loaded attapulgite mineral sorbent [J]. Journal of Combustion Science and Technology, 2014, 20 (6): 553-557 (in Chinese).
[15] CAO F, SU S, XIANG J, et al. Density functional study of adsorption properties of NO and NH3 over CuO/γ-Al2O3 catalyst [J]. Applied Surface Science, 2012, 261: 659-664. [16] WANG J W, KONG X J, DU R B, et al. Removal of vapor-phase elemental mercury over a CuO/AC catalyst [J]. Advanced Materials Research, 2013, 610: 64-67. [17] DU W, YIN L B, ZHOU Y Q, et al. Performance of CuOx-neutral Al2O3 sorbents on mercury removal from simulated coal combustion flue gas [J]. Fuel Processing Technology, 2015, 131: 403-408. [18] BLOOM N, PREUS E, KATON J. Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils [J]. Analytica Chimica Acta, 2003, 479: 233-248. [19] LEE S S, LEE J Y, KHANG S J, et al. Modeling of mercury oxidation and adsorption by cupric chloride-impregnated carbons sorbents [J]. Industrial and Engineering Chemistry Research, 2009, 48: 9049-9053. [20] ZHAO B, YI H H, TANG X L, et al. Copper modified activated coke for mercury removal from coal-fired flue gas [J]. Chemical Engineering Journal, 2016, 286: 585-593. [21] YAMAGUCHI A, AKIHO H, ITO S. Mercury oxidation by copper oxides in combustion flue gases [J]. Powder Technology, 2008, 180: 222-226. [22] WU S J, UDDIN M, NAGANO S, et al. Fundamental study on decomposition characteristics of mercury compounds over solid powder by temperature-programmed decomposition desorption mass spectrometry [J]. Energy Fuels, 2011, 25: 144-153. [23] RUMAYOR M, DIAZ-SOMOANO M, LÓPEZ-ANTÓN M A, et al. Temperature programmed desorption as a tool for the identification of mercury fate in wet-desulphurization systems [J]. Fuel, 2015, 148: 98-103. [24] XU W Q, WANG H R, ZHOU X, et al. CuO/TiO2 catalysts for gas-phase Hg0 catalytic oxidation [J]. Chemical Engineering Journal, 2014, 243: 380-385. [25] WANG J W, YANG J L, LIU Z Y. Gas-phase elemental mercury capture by a V2O5/AC catalyst [J]. Fuel Processing Technology, 2010, 91 (6): 676-680. [26] 向文娟. 氧化铜对燃煤烟气汞的气固吸附机理研究 [D]. 武汉:华中科技大学, 2012. XIANG W J. Adsorption mechanism of mercury species from coal-fired flue gas on copper oxide surface [D]. Wuhan: Huazhong University of Science and Technology, 2012 (in Chinese). [27] 王钧伟, 杨建丽, 刘振宇. V2O5/AC在含SO2气氛中对气态Hg0的吸附脱除研究 [J]. 环境科学, 2009, 30 (12): 3455-3460. WANG J W, YANG J L, LIU Z Y. Adsorption and removal of gas-phase Hg0 over a V2O5/AC catalyst in the presence of SO2 [J]. Environmental Science, 2009, 30 (12): 3455-3460 (in Chinese).
[28] MEI Z J, SHEN Z M, ZOHA Q J, et al. Removal and recovery of gas-phase element mercury by mental oxide-loaded activated carbon [J]. Journal of Hazardous Materials, 2008, 152 (2): 721-729. [29] 王钧伟, 陈培, 刘瑞卿, 等. 粉煤灰负载Fe2O3脱除气态单质汞的试验研究 [J]. 环境科学学报, 2014, 34 (12): 3152-3157. WANG J W, CHEN P, LIU R Q, et al. Hg0 removal by a fly ash-supported Fe2O3 catalyst [J]. Acta Scientiae Circumstantiae, 2014, 34 (12): 3152-3157 (in Chinese).
-

计量
- 文章访问数: 1054
- HTML全文浏览数: 995
- PDF下载数: 421
- 施引文献: 0