[1] |
ZHU L, CHANG D W, DAI L, et al. DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells[J]. Nano Letters, 2007, 7(12):3592-3597.
|
[2] |
ALLOY M M, ROBERTS A P. Effects of suspended multi-walled carbon nanotubes on daphnid growth andreproduction[J]. Ecotoxicology and Environmental Safety, 2011, 74(7):1839-1843.
|
[3] |
YI P, CHEN K L. Release kinetics of multiwalled carbon nanotubes deposited on silica surfaces:quartz crystal microbalance with dissipation (QCM-D) measurements and modeling[J]. Environmental Science & Technology, 2014, 48(8):4406-4413.
|
[4] |
SHEN M H, YIN Y G, ANDY B, et al. Effects of molecular weight-dependent physicochemical heterogeneity of natural organic matter on the aggregation of fullerene nanoparticles in mono-and di-valent electrolyte solutions[J]. Water Research, 2015, 71:11-20.
|
[5] |
HERRERO-LATORRE C, ALVAREZ-MENDEZ J, BARCIELA-GARCIA J, et al. Characterization of carbon nanotubes and analytical methods for their determination in environmental and biological samples:A review[J]. Analytica Chimica Acta,2015, 853(1):77-94.
|
[6] |
SUMMERS R S, ROBERTS P V. Activated carbon adsorption of humic substances:I. Hetero disperse mixtures and desorption[J]. Journal of Colloid & Interface Science, 1988, 122(2):367-381.
|
[7] |
FILELLA M. Fresh waters:Which NOM matters[J]. Environmental Chemistry Letters, 2009, 7(1):21-35.
|
[8] |
PICCOLO A. The supramolecular structure of humic substances[J]. Soil Sci, 2001,166(11):810-832.
|
[9] |
BAALOUSHA M, MOTELICA-HEINO M, LE COUSTUMER P. Conformation and size of humic substances:Effects of major cation concentration and type, pH, salinity, and residence time[J]. Coll Surf A:Physicochem Eng Asp, 2006,272(1-2):48-55.
|
[10] |
SALEH N B, PFEFFERLE L D, ELIMELECH M. Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems:Measurements and environmental implications[J]. Environmental Science & Technology, 2008, 42(21):7963-7969.
|
[11] |
SESIS A, HODNETT M, MEMOLI G, et al. Influence of acoustic cavitation on the controlled ultrasonic dispersion of carbon nanotubes[J]. Journal of Physical Chemistry B, 2013,117:15141-15150.
|
[12] |
方华,孙宇心,荆洁,等. 水中多壁碳纳米管凝聚动力学研究[J]. 环境化学, 2015, 34(2):347-351.
FANG H, SUN Y X, JING J, et al. Aggregation kinetics of multi-walled carbon nanotubes in aquatic systems[J]. Environmental Chemistry, 2015, 34(2):347-351(in Chinese).
|
[13] |
CHEN K L, ELIMELECH M. Aggregation and deposition kinetics of fullerene (C60) nanoparticles[J]. Langmuir, 2006,22(26):10994-11001.
|
[14] |
MASHAYEKHI H, GHOSH S, DU P, et al. Effect of natural organic matter on aggregation behavior of C60 fullerene in water[J]. Journal of Colloid & Interface Science, 2012,374(1):111-117.
|
[15] |
方华,孙宇心,于江华,等.腐殖酸对水中多壁碳纳米管凝聚特性的影响[J]. 中国环境科学, 2015, 35(5):1410-1415.
FANG H, SUN Y X, YU J H, et al. Influence of humic acid on the aggregation of multi-walled carbon nanotubes(MWNTs) in aquatic systems[J]. China Environmental Science, 2015, 35(5):1410-1415(in Chinese).
|
[16] |
VAISMAN L, WAGNER H D, MAROM G. The role of surfactants in dispersion of carbon nanotubes[J]. Advances in Colloid & Interface Science, 2007, 218-130(128-130):37-46.
|
[17] |
CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24):5701-5710.
|
[18] |
VODACEK A, PHILPOT W D. Enviromental effects on laser-induced fluorescence spectra of natural waters[J]. Remote Sensing of Humic Substances, 1995, 21(1):83-95.
|
[19] |
蒋凤华, 杨黄浩, 黎先春等. 胶州湾海水溶解有机物三维荧光特征研究[J]. 光谱学与光谱分析, 2007, 27(9):1765-1769.
JIANG F H, YANG H H, LI X C, et al. Study on excitation-emission matrix spectroscopy of dissolved organic matter in seawater of Jiaozhou Bay[J].Spectroscopy and Spectral Analysis, 2007, 27(9):1765-1769(in Chinese).
|
[20] |
CORY R M, MCKNIGHT D M. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinines in dissolved orangic matter[J]. Environmental Science & Technology, 2005, 39(21):8142-8149.
|
[21] |
方华,荆洁,于江华等. 天然有机物和电解质对水中C60凝聚行为的影响[J]. 环境科学, 2015, 36(10):3715-3719.
FANG H, JING J,YU J H, et al. Effect of natural organic matter and electrolytes on the aggregation of C60 nanoparticles in aquatic systems[J]. Environmental Science, 2015, 36(10):3715-3719(in Chinese).
|
[22] |
方华, 沈冰冰,荆洁,等. 水中C60纳米颗粒的稳定性研究[J]. 环境科学, 2014, 35(4):1337-1342.
FANG H, SUN Y X, JING J, et al. Stability of C60 nanoparticles in aquatic systems[J]. Environmental Science, 2014, 35(4):1337-1342(in Chinese).
|
[23] |
张宝贵.环境化学[M]. 武汉:华中科技大学出版社, 2009. ZHANG B G. Environmental chemistry[M].Wuhan:Huazhong University of Science and Technology Press,2009(in Chinese).
|
[24] |
WANG X L, SHU L, WANG Y Q, et al. Sorption of peat humic acids to multi-walled carbon nanotubes[J]. Environmental Science & Technology, 2011, 45(21):9276-9283.
|
[25] |
TIPPING E, HURLEY M A. A unifying model of cation binding by humic substances[J]. Geochimica et Cosmochimica Acta, 1992,56(10):3627-3641.
|