不同分子量天然有机质和电解质对碳纳米管稳定性的影响

方华, 杨嘉惠, 章婷婷, 于江华, 曹惠忠. 不同分子量天然有机质和电解质对碳纳米管稳定性的影响[J]. 环境化学, 2017, 36(12): 2634-2640. doi: 10.7524/j.issn.0254-6108.2017040604
引用本文: 方华, 杨嘉惠, 章婷婷, 于江华, 曹惠忠. 不同分子量天然有机质和电解质对碳纳米管稳定性的影响[J]. 环境化学, 2017, 36(12): 2634-2640. doi: 10.7524/j.issn.0254-6108.2017040604
FANG Hua, YANG Jiahui, ZHANG Tingting, YU Jianghua, CAO Huizhong. Effects of natural organic matter with different molecular weight and electrolytes on the stability of multi-walled carbon nanotubes[J]. Environmental Chemistry, 2017, 36(12): 2634-2640. doi: 10.7524/j.issn.0254-6108.2017040604
Citation: FANG Hua, YANG Jiahui, ZHANG Tingting, YU Jianghua, CAO Huizhong. Effects of natural organic matter with different molecular weight and electrolytes on the stability of multi-walled carbon nanotubes[J]. Environmental Chemistry, 2017, 36(12): 2634-2640. doi: 10.7524/j.issn.0254-6108.2017040604

不同分子量天然有机质和电解质对碳纳米管稳定性的影响

  • 基金项目:

    国家自然科学基金(41401546)和江苏省普通高校研究生实践创新计划项目(SJLX15_0391)资助.

Effects of natural organic matter with different molecular weight and electrolytes on the stability of multi-walled carbon nanotubes

  • Fund Project: Supported by the National Natural Science Foundation of China (41401546)and Graduate Innovation Program of Jiangsu (SJLX15_0391).
  • 摘要: 以多壁碳纳米管(multi-walled carbon nanotubes, MWNTs)为对象,研究不同分子量分布区间天然有机物(natural organic matter, NOM)和电解质对MWNTs在水中凝聚及分散行为的影响.结果表明,低分子量(100 k Da)NOM可强化凝聚发生.不同分子量区间NOM将通过不同机制影响碳纳米材料在水中的凝聚.
  • 加载中
  • [1] ZHU L, CHANG D W, DAI L, et al. DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells[J]. Nano Letters, 2007, 7(12):3592-3597.
    [2] ALLOY M M, ROBERTS A P. Effects of suspended multi-walled carbon nanotubes on daphnid growth andreproduction[J]. Ecotoxicology and Environmental Safety, 2011, 74(7):1839-1843.
    [3] YI P, CHEN K L. Release kinetics of multiwalled carbon nanotubes deposited on silica surfaces:quartz crystal microbalance with dissipation (QCM-D) measurements and modeling[J]. Environmental Science & Technology, 2014, 48(8):4406-4413.
    [4] SHEN M H, YIN Y G, ANDY B, et al. Effects of molecular weight-dependent physicochemical heterogeneity of natural organic matter on the aggregation of fullerene nanoparticles in mono-and di-valent electrolyte solutions[J]. Water Research, 2015, 71:11-20.
    [5] HERRERO-LATORRE C, ALVAREZ-MENDEZ J, BARCIELA-GARCIA J, et al. Characterization of carbon nanotubes and analytical methods for their determination in environmental and biological samples:A review[J]. Analytica Chimica Acta,2015, 853(1):77-94.
    [6] SUMMERS R S, ROBERTS P V. Activated carbon adsorption of humic substances:I. Hetero disperse mixtures and desorption[J]. Journal of Colloid & Interface Science, 1988, 122(2):367-381.
    [7] FILELLA M. Fresh waters:Which NOM matters[J]. Environmental Chemistry Letters, 2009, 7(1):21-35.
    [8] PICCOLO A. The supramolecular structure of humic substances[J]. Soil Sci, 2001,166(11):810-832.
    [9] BAALOUSHA M, MOTELICA-HEINO M, LE COUSTUMER P. Conformation and size of humic substances:Effects of major cation concentration and type, pH, salinity, and residence time[J]. Coll Surf A:Physicochem Eng Asp, 2006,272(1-2):48-55.
    [10] SALEH N B, PFEFFERLE L D, ELIMELECH M. Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems:Measurements and environmental implications[J]. Environmental Science & Technology, 2008, 42(21):7963-7969.
    [11] SESIS A, HODNETT M, MEMOLI G, et al. Influence of acoustic cavitation on the controlled ultrasonic dispersion of carbon nanotubes[J]. Journal of Physical Chemistry B, 2013,117:15141-15150.
    [12] 方华,孙宇心,荆洁,等. 水中多壁碳纳米管凝聚动力学研究[J]. 环境化学, 2015, 34(2):347-351.

    FANG H, SUN Y X, JING J, et al. Aggregation kinetics of multi-walled carbon nanotubes in aquatic systems[J]. Environmental Chemistry, 2015, 34(2):347-351(in Chinese).

    [13] CHEN K L, ELIMELECH M. Aggregation and deposition kinetics of fullerene (C60) nanoparticles[J]. Langmuir, 2006,22(26):10994-11001.
    [14] MASHAYEKHI H, GHOSH S, DU P, et al. Effect of natural organic matter on aggregation behavior of C60 fullerene in water[J]. Journal of Colloid & Interface Science, 2012,374(1):111-117.
    [15] 方华,孙宇心,于江华,等.腐殖酸对水中多壁碳纳米管凝聚特性的影响[J]. 中国环境科学, 2015, 35(5):1410-1415.

    FANG H, SUN Y X, YU J H, et al. Influence of humic acid on the aggregation of multi-walled carbon nanotubes(MWNTs) in aquatic systems[J]. China Environmental Science, 2015, 35(5):1410-1415(in Chinese).

    [16] VAISMAN L, WAGNER H D, MAROM G. The role of surfactants in dispersion of carbon nanotubes[J]. Advances in Colloid & Interface Science, 2007, 218-130(128-130):37-46.
    [17] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24):5701-5710.
    [18] VODACEK A, PHILPOT W D. Enviromental effects on laser-induced fluorescence spectra of natural waters[J]. Remote Sensing of Humic Substances, 1995, 21(1):83-95.
    [19] 蒋凤华, 杨黄浩, 黎先春等. 胶州湾海水溶解有机物三维荧光特征研究[J]. 光谱学与光谱分析, 2007, 27(9):1765-1769.

    JIANG F H, YANG H H, LI X C, et al. Study on excitation-emission matrix spectroscopy of dissolved organic matter in seawater of Jiaozhou Bay[J].Spectroscopy and Spectral Analysis, 2007, 27(9):1765-1769(in Chinese).

    [20] CORY R M, MCKNIGHT D M. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinines in dissolved orangic matter[J]. Environmental Science & Technology, 2005, 39(21):8142-8149.
    [21] 方华,荆洁,于江华等. 天然有机物和电解质对水中C60凝聚行为的影响[J]. 环境科学, 2015, 36(10):3715-3719.

    FANG H, JING J,YU J H, et al. Effect of natural organic matter and electrolytes on the aggregation of C60 nanoparticles in aquatic systems[J]. Environmental Science, 2015, 36(10):3715-3719(in Chinese).

    [22] 方华, 沈冰冰,荆洁,等. 水中C60纳米颗粒的稳定性研究[J]. 环境科学, 2014, 35(4):1337-1342.

    FANG H, SUN Y X, JING J, et al. Stability of C60 nanoparticles in aquatic systems[J]. Environmental Science, 2014, 35(4):1337-1342(in Chinese).

    [23] 张宝贵.环境化学[M]. 武汉:华中科技大学出版社, 2009. ZHANG B G. Environmental chemistry[M].Wuhan:Huazhong University of Science and Technology Press,2009(in Chinese).
    [24] WANG X L, SHU L, WANG Y Q, et al. Sorption of peat humic acids to multi-walled carbon nanotubes[J]. Environmental Science & Technology, 2011, 45(21):9276-9283.
    [25] TIPPING E, HURLEY M A. A unifying model of cation binding by humic substances[J]. Geochimica et Cosmochimica Acta, 1992,56(10):3627-3641.
  • 加载中
计量
  • 文章访问数:  992
  • HTML全文浏览数:  923
  • PDF下载数:  222
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-04-06
  • 刊出日期:  2017-12-15
方华, 杨嘉惠, 章婷婷, 于江华, 曹惠忠. 不同分子量天然有机质和电解质对碳纳米管稳定性的影响[J]. 环境化学, 2017, 36(12): 2634-2640. doi: 10.7524/j.issn.0254-6108.2017040604
引用本文: 方华, 杨嘉惠, 章婷婷, 于江华, 曹惠忠. 不同分子量天然有机质和电解质对碳纳米管稳定性的影响[J]. 环境化学, 2017, 36(12): 2634-2640. doi: 10.7524/j.issn.0254-6108.2017040604
FANG Hua, YANG Jiahui, ZHANG Tingting, YU Jianghua, CAO Huizhong. Effects of natural organic matter with different molecular weight and electrolytes on the stability of multi-walled carbon nanotubes[J]. Environmental Chemistry, 2017, 36(12): 2634-2640. doi: 10.7524/j.issn.0254-6108.2017040604
Citation: FANG Hua, YANG Jiahui, ZHANG Tingting, YU Jianghua, CAO Huizhong. Effects of natural organic matter with different molecular weight and electrolytes on the stability of multi-walled carbon nanotubes[J]. Environmental Chemistry, 2017, 36(12): 2634-2640. doi: 10.7524/j.issn.0254-6108.2017040604

不同分子量天然有机质和电解质对碳纳米管稳定性的影响

  • 1.  南京信息工程大学环境科学与工程学院, 南京, 210044;
  • 2.  大气环境与装备技术协同创新中心, 南京, 210044
基金项目:

国家自然科学基金(41401546)和江苏省普通高校研究生实践创新计划项目(SJLX15_0391)资助.

摘要: 以多壁碳纳米管(multi-walled carbon nanotubes, MWNTs)为对象,研究不同分子量分布区间天然有机物(natural organic matter, NOM)和电解质对MWNTs在水中凝聚及分散行为的影响.结果表明,低分子量(100 k Da)NOM可强化凝聚发生.不同分子量区间NOM将通过不同机制影响碳纳米材料在水中的凝聚.

English Abstract

参考文献 (25)

返回顶部

目录

/

返回文章
返回