[1] ENSAFI A A, RABIEI S, REZAEIA B, et al. Magnetic solid-phase extraction to preconcentrate ultra trace amounts of lead(Ⅱ) using modified-carbon nanotubes decorated with NiFe2O4 magnetic nanoparticles[J]. Analytical Methods, 2013, 5:3903-3908.
[2] 谭丽莎, 孙明洋, 胡运俊,等.功能化纳米Fe3O4磁性材料的制备及其对水中重金属离子的去除[J]. 化学进展,2013, 25(12):2147-2158. TAN L S, SUN M Y, HU Y J, et al. Heavy metal removal from aqueous solution by functional magnetic Fe3O4 nanoparticles[J]. Progess in Chemistry, 2013, 25(12):2147-2158 (in Chinese).
[3] MARSCHNER B, WELGEP P, HACK A, et al. Comparison of soil Pb in vitro bioaccessibility and in vivo bioavailability with Pb pools from a sequential soil extraction[J]. Environmental Science & Technology, 2006, 40:2812-2818.
[4] KAVALLIERATOS K, ROSENBERG J M, CHEN W Z, et al. Fluorescent sensing and selective Pb(Ⅱ) Extraction by a dansylamide ion-exchanger[J]. Journal of the American Chemical Society, 2005, 127:6514-6515.
[5] 姜智超, 邓景衡, 李伟. 四氧化三铁-蛭石复合材料制备及其对Pb2+的吸附性能[J].环境化学,2017, 36(7):1664-1671. JIANG Z C, DENG J H, LI W. Synthesis of Fe3O4-vermiculite composite and its adsorption performance for Pb2+[J].Environmental Chemistry, 2017, 36(7):1664-1671 (in Chinese).
[6] SASAKI T, SAKAI Y, ⅡZUKA A, et al. Evaluation of the capacity of hydroxyapaptite prepared from concrete sludge to remove lead from water[J]. Industrial & Engineering Chemistry Research, 2011, 50:9564-9568.
[7] CHEN Z M, GENG Z R, ZHANG Z Y, et al. Synthesis of magnetic Fe3O4@C nanoparticles modified with-SO3H and -COOH groups for fast removal of Pb2+, Hg2+, and Cd2+ ions[J]. European Journal of Inorganic Chemistry, 2014:3172-3177.
[8] 刘正华, 周方钦, 黄荣辉, 等. 纳米二氧化钛对痕量铅的吸附性能研究[J]. 分析试验室, 2006, 25(11):63-66. LIU Z H, ZHOU F Q, HUANG R H, et al. Study on adsorption behavior of trace Pb on nanometer-size titanium dioxide[J]. Chinese Journal of Analysis Laboratory, 2006, 25(11):63-66 (in Chinese).
[9] GONZALO M A, SCHROEDER S L M. Sustainable natural adsorbents for heavy metal removal from wastewater:Lead sorption on pine bark[J].Surface and Interface Analysis, 2015, 47:996-1000.
[10] ZARGOOSH, HABIBI H, ABDOLMALEKI A, et al. Novel magnetic polyamic hydrazide nanocomposite:Preparation, characterization, and application for the removal of Cd and Pb from industrial wastes[J]. Journal of Applied Polymer Science, 2015, 132(37):42538.
[11] MORRIS T A, PETERSON A W, TARLOV M J, Selective binding of rnase B glycoforms by polydopamine-immobilized concanavalin A[J]. Analytical Chemistry, 2009, 81:5413-5420.
[12] XU L Q, YANG W J, NEOH K G, et al. Dopamine-induced reduction and functionalization of graphene oxide nanosheets[J]. Macromolecules, 2010, 43:8336-8339.
[13] SHI C Y, DENG C H, ZHANG X M, et al. Synthesis of highly water-dispersible polydopamine-modified multiwalled carbon nanotubes for matrix-assisted laser desorption/ionization mass spectrometry analysis[J]. ACS Applied Materials and Interfaces, 2013, 5:7770-7776.
[14] SURESHKUMAR M, SISWANTO D Y, LEE C K. Magnetic antimicrobial nanocomposite based on bacterial cellulose and silver nanoparticles[J]. Journal of Material Chemistry, 2010, 20:6948-6955.
[15] TSAI W B, CHIEN C Y, THISSEN H, et al. Dopamine-assisted immobilization of poly(ethylene imine) based polymers for control of cell-surface interactions[J]. Acta Biomaterialia, 2011, 7:2518-2525.
[16] LEE H, DELLATORE S M, MILLER W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318:426-430.
[17] ZHANG M, ZHANG X, HE X, et al. Preparation and characterization of polydopamine-coated silver core/shell nanocables[J]. Chemistry Letters, 2010, 39:552-553.
[18] ZENG T, ZHANG X L, NIU H Y, et al. In situ growth of gold nanoparticles onto polydopamine-encapsulated magnetic microspheres for catalytic reduction of nitrobenzene[J]. Applied Catalysis B:Environmental, 2013, 134-135(9):26-33.
[19] MA Y R, ZHANG X L, ZENG T, et al. Polydopamine coated magnetic nanoparticles for enrichment and direct detection of small molecule pollutants coupled with MALDI-TOF-MS[J]. ACS Applied Materials and Interfaces, 2013, 5(3):1024-1030.
[20] LIU R, MAHURIN S M, LI C, et al. Dopamine as a carbon source:The controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites[J]. Angewandte Chemie International Edition, 2011, 50:6799-6802.
[21] OCHS C J, HONG T, SUCH G K, et al. Dopamine-mediated continuous assembly of biodegradable capsules[J]. Chemisrey Materials, 2011,23:3141-3143.
[22] WEI Q, ZHANG F, LI J, et al. Oxidant-induced dopamine polymerization for multifunctional coatings[J]. Polym Chem-Uk, 2010, 1:1430-1433.
[23] 王力霞,于云秋,姚文生. 纳米四氧化三铁制备及其吸附刚果红的性能研究[J]. 无机盐工业, 2017, 49(4):37-45. WANG L X,YU Y Q,YAO W S. Preparation of nanocrystalline Fe3O4 and study on their adsorption performance for Congo red[J]. Inorganic Chemicals Industry, 2017, 49(4):37-45 (in Chinese).
[24] 冀泽华,吴晓芙,李芸,等.水溶液重金属离子在蛭石上的动态吸附行为与化学势变[J]. 环境化学, 2015, 34(11):2109-2117. JI Z H, WU X Y, LI Y, et al. Kinetic adsorption and change in chemical potential of heavy metal ions in aqueous solution[J]. Environmental Chemiatry, 2015, 34(11):2109-2117 (in Chinese).
[25] ZHANG Q R, LI Y X, YANG Q G, et al. Distinguished Cr(Ⅵ) capture with rapid and superior capability using polydopamine microsphere:Behavior and mechanism[J]. Journal of Hazardous Materials, 2018, 342:732-740.
[26] 张延红, 程国斌, 马伟. 利用Origin软件对吸附等温线拟合进行分析[J]. 计算机与应用化学, 2005, 22(10):899-902. ZHANG Y H, CHENG G B, MA W. Analysis of fitting isotherm model using origin software[J]. Computers and Applied Chemistry, 2005, 22(10):899-902 (in Chinese).
[27] SONDAL J, SINGH D, SIKKA R. Comparative evaluation of arsenate sorption-desorption in two soils of North India[J]. Environmental Earth Sciences, 2016, 75(3):1-9.