聚多巴胺包覆磁性纳米材料吸附去除模拟废水中的铅离子
Adsorption and removal of lead from simulated waste water using polydopamine modified magnetic nanoparticles
-
摘要: 采用共沉淀法制备聚多巴胺包覆的磁性纳米材料(Fe3O4@PDA NPs),并利用透射电子显微镜(TEM)、X光电子能谱(XPS)、振动磁强计(VSM)等手段表征了磁性纳米材料的化学组成和物理形貌.考察了溶液pH值、吸附平衡时间、纳米材料投加量、共存离子及离子强度等对铅吸附的影响,确定最佳实验条件为吸附平衡时间1 h、pH 5.5、吸附剂投加量1.5 g·L-1.常见共存离子均不干扰铅的吸附去除.通过直线方程拟合,证实Fe3O4@PDA NPs对铅离子的吸附等温线符合Langmuir方程,为单分子层吸附,饱和吸附量约为20.68 mg·g-1.1.5 h内,Fe3O4@PDA NPs对自来水、模拟废水中铅的吸附去除效率可以达到97.2%以上,此结果表明Fe3O4@PDA NPs可以用于铅污染环境水样的净化处理中.Abstract: A coprecipitation method was employed for the synthesis of polydopamine coated magnetic nanoparticles (Fe3O4@PDA NPs). Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM) were used to characterize the structure of the magnetic nanoparticles, and all the results indicate the successful synthesis of Fe3O4@PDA NPs. The effects of solution pH, adsorption equilibrium time, dosage of Fe3O4@PDA NPs and coexisting anions on the adsorption of lead were investigated. And results showed that the adsorption isotherms of lead in our experiments could be well described by Langmuir equation, while the maximum adsorption capacity of lead reached 20.68 mg·g-1 under the optimal conditions of equilibrium time 1 h, pH 5.5, and Fe3O4@PDA NPs 1.5 g·L-1. Furthermore, Fe3O4@PDA NPs could remove at least 97.2% of lead from tap water or simulated waste water within 1.5 h, which demonstrates the potential application of Fe3O4@PDA NPs in the treatment of lead polluted environmental water.
-
Key words:
- polydopamine /
- heavy metal /
- magnetic separation technique /
- lead contaminated wastewater
-
-
[1] ENSAFI A A, RABIEI S, REZAEIA B, et al. Magnetic solid-phase extraction to preconcentrate ultra trace amounts of lead(Ⅱ) using modified-carbon nanotubes decorated with NiFe2O4 magnetic nanoparticles[J]. Analytical Methods, 2013, 5:3903-3908. [2] 谭丽莎, 孙明洋, 胡运俊,等.功能化纳米Fe3O4磁性材料的制备及其对水中重金属离子的去除[J]. 化学进展,2013, 25(12):2147-2158. TAN L S, SUN M Y, HU Y J, et al. Heavy metal removal from aqueous solution by functional magnetic Fe3O4 nanoparticles[J]. Progess in Chemistry, 2013, 25(12):2147-2158 (in Chinese).
[3] MARSCHNER B, WELGEP P, HACK A, et al. Comparison of soil Pb in vitro bioaccessibility and in vivo bioavailability with Pb pools from a sequential soil extraction[J]. Environmental Science & Technology, 2006, 40:2812-2818. [4] KAVALLIERATOS K, ROSENBERG J M, CHEN W Z, et al. Fluorescent sensing and selective Pb(Ⅱ) Extraction by a dansylamide ion-exchanger[J]. Journal of the American Chemical Society, 2005, 127:6514-6515. [5] 姜智超, 邓景衡, 李伟. 四氧化三铁-蛭石复合材料制备及其对Pb2+的吸附性能[J].环境化学,2017, 36(7):1664-1671. JIANG Z C, DENG J H, LI W. Synthesis of Fe3O4-vermiculite composite and its adsorption performance for Pb2+[J].Environmental Chemistry, 2017, 36(7):1664-1671 (in Chinese).
[6] SASAKI T, SAKAI Y, ⅡZUKA A, et al. Evaluation of the capacity of hydroxyapaptite prepared from concrete sludge to remove lead from water[J]. Industrial & Engineering Chemistry Research, 2011, 50:9564-9568. [7] CHEN Z M, GENG Z R, ZHANG Z Y, et al. Synthesis of magnetic Fe3O4@C nanoparticles modified with-SO3H and -COOH groups for fast removal of Pb2+, Hg2+, and Cd2+ ions[J]. European Journal of Inorganic Chemistry, 2014:3172-3177. [8] 刘正华, 周方钦, 黄荣辉, 等. 纳米二氧化钛对痕量铅的吸附性能研究[J]. 分析试验室, 2006, 25(11):63-66. LIU Z H, ZHOU F Q, HUANG R H, et al. Study on adsorption behavior of trace Pb on nanometer-size titanium dioxide[J]. Chinese Journal of Analysis Laboratory, 2006, 25(11):63-66 (in Chinese).
[9] GONZALO M A, SCHROEDER S L M. Sustainable natural adsorbents for heavy metal removal from wastewater:Lead sorption on pine bark[J].Surface and Interface Analysis, 2015, 47:996-1000. [10] ZARGOOSH, HABIBI H, ABDOLMALEKI A, et al. Novel magnetic polyamic hydrazide nanocomposite:Preparation, characterization, and application for the removal of Cd and Pb from industrial wastes[J]. Journal of Applied Polymer Science, 2015, 132(37):42538. [11] MORRIS T A, PETERSON A W, TARLOV M J, Selective binding of rnase B glycoforms by polydopamine-immobilized concanavalin A[J]. Analytical Chemistry, 2009, 81:5413-5420. [12] XU L Q, YANG W J, NEOH K G, et al. Dopamine-induced reduction and functionalization of graphene oxide nanosheets[J]. Macromolecules, 2010, 43:8336-8339. [13] SHI C Y, DENG C H, ZHANG X M, et al. Synthesis of highly water-dispersible polydopamine-modified multiwalled carbon nanotubes for matrix-assisted laser desorption/ionization mass spectrometry analysis[J]. ACS Applied Materials and Interfaces, 2013, 5:7770-7776. [14] SURESHKUMAR M, SISWANTO D Y, LEE C K. Magnetic antimicrobial nanocomposite based on bacterial cellulose and silver nanoparticles[J]. Journal of Material Chemistry, 2010, 20:6948-6955. [15] TSAI W B, CHIEN C Y, THISSEN H, et al. Dopamine-assisted immobilization of poly(ethylene imine) based polymers for control of cell-surface interactions[J]. Acta Biomaterialia, 2011, 7:2518-2525. [16] LEE H, DELLATORE S M, MILLER W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318:426-430. [17] ZHANG M, ZHANG X, HE X, et al. Preparation and characterization of polydopamine-coated silver core/shell nanocables[J]. Chemistry Letters, 2010, 39:552-553. [18] ZENG T, ZHANG X L, NIU H Y, et al. In situ growth of gold nanoparticles onto polydopamine-encapsulated magnetic microspheres for catalytic reduction of nitrobenzene[J]. Applied Catalysis B:Environmental, 2013, 134-135(9):26-33. [19] MA Y R, ZHANG X L, ZENG T, et al. Polydopamine coated magnetic nanoparticles for enrichment and direct detection of small molecule pollutants coupled with MALDI-TOF-MS[J]. ACS Applied Materials and Interfaces, 2013, 5(3):1024-1030. [20] LIU R, MAHURIN S M, LI C, et al. Dopamine as a carbon source:The controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites[J]. Angewandte Chemie International Edition, 2011, 50:6799-6802. [21] OCHS C J, HONG T, SUCH G K, et al. Dopamine-mediated continuous assembly of biodegradable capsules[J]. Chemisrey Materials, 2011,23:3141-3143. [22] WEI Q, ZHANG F, LI J, et al. Oxidant-induced dopamine polymerization for multifunctional coatings[J]. Polym Chem-Uk, 2010, 1:1430-1433. [23] 王力霞,于云秋,姚文生. 纳米四氧化三铁制备及其吸附刚果红的性能研究[J]. 无机盐工业, 2017, 49(4):37-45. WANG L X,YU Y Q,YAO W S. Preparation of nanocrystalline Fe3O4 and study on their adsorption performance for Congo red[J]. Inorganic Chemicals Industry, 2017, 49(4):37-45 (in Chinese).
[24] 冀泽华,吴晓芙,李芸,等.水溶液重金属离子在蛭石上的动态吸附行为与化学势变[J]. 环境化学, 2015, 34(11):2109-2117. JI Z H, WU X Y, LI Y, et al. Kinetic adsorption and change in chemical potential of heavy metal ions in aqueous solution[J]. Environmental Chemiatry, 2015, 34(11):2109-2117 (in Chinese).
[25] ZHANG Q R, LI Y X, YANG Q G, et al. Distinguished Cr(Ⅵ) capture with rapid and superior capability using polydopamine microsphere:Behavior and mechanism[J]. Journal of Hazardous Materials, 2018, 342:732-740. [26] 张延红, 程国斌, 马伟. 利用Origin软件对吸附等温线拟合进行分析[J]. 计算机与应用化学, 2005, 22(10):899-902. ZHANG Y H, CHENG G B, MA W. Analysis of fitting isotherm model using origin software[J]. Computers and Applied Chemistry, 2005, 22(10):899-902 (in Chinese).
[27] SONDAL J, SINGH D, SIKKA R. Comparative evaluation of arsenate sorption-desorption in two soils of North India[J]. Environmental Earth Sciences, 2016, 75(3):1-9. -

计量
- 文章访问数: 1635
- HTML全文浏览数: 1560
- PDF下载数: 339
- 施引文献: 0