[1] ENDO S, GOSS K U. Applications of polyparameter linear free energy relationships in environmental chemistry[J]. Environmental Science & Technology, 2014, 48(21): 12477-12491.
[2] SHAO Y H, LIU J N, WANG M X, et al. Integrated QSPR models to predict the soil sorption coefficient for a large diverse set of compounds by using different modeling methods[J]. Atmospheric Environment, 2014, 88: 212-218.
[3] NGUYEN T H, GOSS K U, BALL W P. Polyparameter linear free energy relationships for estimating the equilibrium partition of organic compounds between water and the natural organic matter in soils and sediments[J]. Environmental Science & Technology, 2005, 39(4): 913-924.
[4] LU Z J, MACFARLANE J K, GSCHWEND P M. Adsorption of organic compounds to diesel soot: Frontal analysis and polyparameter linear free-energy relationship[J]. Environmental Science & Technology, 2016, 50(1): 285-293.
[5] GOSS K U, BRONNER G, HARNER T, et al. The partition behavior of fluorotelomer alcohols and olefins[J]. Enviromental Science & Technology, 2006, 40(11): 3572-3577.
[6] PANAGOPOULOS D, KIERKEGAARD A, JAHNKE A, et al. Evaluating the salting-out effect on the organic carbon/water partition ratios (KOC and KDOC) of linear and cyclic volatile methylsiloxanes: Measurements and polyparameter linear free energy relationships[J]. Journal of Chemical & Engineering Data, 2016, 61(9):3098-3108.
[7] ENDO S, GOSS K U. Predicting partition coefficients of polyfluorinated and organosilicon compounds using Polyparameter Linear Free Energy Relationships (PP-LFERs)[J]. Environmental Science & Technology, 2014, 48(5): 2776-2784.
[8] LI M S, WANG R, FU KUO D T, et al. Linear free energy relationships for the adsorption of volatile organic compounds onto multiwalled carbon nanotubes at different relative humidities: comparison with organoclays and activated carbon[J]. Environmental Science: Processes & Impacts, 2017, 19(3): 276-287.
[9] ABRAHAM M H. Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes[J]. Chemical Society Reviews, 1993, 22(2): 73-83.
[10] ABRAHAM M H, IBRAHIM A, ZISSIMOS A M. Determination of sets of solute descriptors from chromatographic measurements[J]. Journal of Chromatography A, 2004, 1037(1-2):29-47.
[11] TVLP H C, GOSS K U, SCHWARZENBACH R P, et al. Experimental determination of LSER parameters for a set of 76 diverse pesticides and pharmaceuticals[J]. Environmental Science & Technology, 2008, 42(6): 2034-2040.
[12] BRONNER G, GOSS K U. Predicting sorption of pesticides and other multifunctional organic chemicals to soil organic carbon[J]. Environmental Science & Technology, 2011, 45(4): 1313-1319.
[13] POOLE C F, ATAPATTU S N, POOLE S K, et al. Determination of solute descriptors by chromatographic methods[J]. Analytica Chimica Acta, 2009, 652(1-2): 32-53.
[14] WECKWERTH J D, VITHA M F, CARR P W. The development and determination of chemically distinct solute parameters for use in linear solvation energy relationships[J]. Fluid Phase Equilibria, 2001, 183-184: 143-157.
[15] 姚义鸣, 赵洋洋, 孙红文. 天津市大气中全氟化合物挥发性前体物的分布和季节变化[J]. 环境化学, 2016, 35(7):1329-1336. YAO Y M, ZHAO Y Y, SUN H W. The atmospheric distribution and seasonal variation of volatile perfluoroalkyl substance precursors in Tianjin[J]. Environmental Chemistry, 2016, 35(7): 1329-1336(in Chinese).
[16] KROGESTH I S, WHELAN M J, ChRISTENSEN G N, et al. Understanding of cyclic volatile methyl siloxane fate in a high latitude lake is constrained by uncertainty in organic carbon-water partitioning[J]. Environmental Science & Technology, 2017, 51(1): 401-409.
[17] 吴婧娴, 栾晓新, 李清波, 等. 市政污水中环形挥发性甲基硅氧烷浓度水平与去除效率[J]. 环境化学, 2016, 35(9):1833-1841. WU J X, LUAN X X, LI Q B, et al. Occurrence and removal efficiency of cyclic volatile methylsiloxanes in municipal wastewater[J]. Environmental Chemistry, 2016, 35(9): 1833-1841(in Chinese).
[18] BORGÅ K, FJELD E, KIERKEGAARD A, et al. Consistency in trophic magnification factors of cyclic methyl siloxanes in pelagic freshwater food webs leading to brown trout[J]. Environmental Science & Technology, 2013, 47(24): 14394-14402.
[19] CHEN S, JIAO X C, GAI N, et al. Perfluorinated compounds in soil, surface water, and groundwater from rural areas in eastern China[J]. Environmental Pollution, 2016, 211: 124-131.
[20] PANAGOPOULOS D, JAHNKE A, KIERKEGAARD A, et al. Organic carbon/water and dissolved organic carbon/water partitioning of cyclic volatile methylsiloxanes: Measurements and polyparameter linear free energy relationships[J]. Environmental Science & Technology, 2015, 49(20): 12161-12168.
[21] ARP H P H, NIEDERER C, GOSS K U. Predicting the partitioning behavior of various highly fluorinated compounds[J]. Environmental Science & Technology, 2006, 40(23): 7298-7304.
[22] KIM M, LI L Y, GRACE J R, et al. Selecting reliable physicochemical properties of perfluoroalkyl and polyfluoroalkyl substances (PFASs) based on molecular descriptors[J]. Environmental Pollution, 2015, 196: 462-472.
[23] ENDO S, GRATHWOHL P, HADERLEIN S B, et al. LFERs for soil organic carbon-water distribution coefficients (KOC) at environmentally relevant sorbate concentrations[J]. Environmental Science & Technology, 2009, 43(9): 3094-3100.
[24] SABLJIC A, GUSTEN H, VERHAAR H, et al. QSAR modelling of soil sorption. Improvements and systematics of log KOC vs. log KOW correlations[J]. Chemosphere, 1995, 31(11-12): 4489-4514.
[25] SCHVVRMANN G, EBRET R U, KVHNE R. Prediction of the sorption of organic compounds into soil organic matter from molecular structure[J]. Environmental Science & Technology, 2006, 40(22): 7005-7011.
[26] KIPKA U, DI TORO D M. A linear solvation energy relationship model of organic chemical partitioning to particulate organic carbon in soils and sediments[J]. Environmental Toxicology and Chemistry, 2011, 30(9): 2013-2022.
[27] GOSS K U, SCHWARZENBACH R P. Linear Free Energy Relationships used to evaluate equilibrium partitioning of organic compounds[J]. Environmental Science & Technology, 2001, 35(1): 1-9.
[28] ABRAHAM M H, POOLE C F, POOLE S K. Classification of stationary phases and other materials by gas chromatography[J]. Journal of Chromatography A, 1999, 842(1-2): 79-114.
[29] ABRAHAM M H, BENJELLOUN-DAKHAMA N, GOLA J M R, et al. Solvation descriptors for ferrocene, and the estimation of some physicochemical and biochemical properties[J]. New Journal of Chemistry, 2000, 24(10): 825-829.
[30] 陈望香, 朱润良, 葛飞, 等. 应用多元线性溶剂化能关系研究有机膨润土的吸附特征[J]. 环境科学学报, 2011, 31(5): 1019-1025. CHEN W X, ZHU R L, GE F, et al. Investigation on the sorptive characteristics of organobentonites using a linear solvation energy relationship[J]. Acta Scientiae Circumstantiae, 2011, 31(5): 1019-1025(in Chinese).
[31] 覃礼堂, 刘树深, 肖乾芬, 等. QSAR 模型内部和外部验证方法综述[J]. 环境化学, 2013, 32(7): 1205-1211. QIN L T, LIU S S, XIAO Q F, et al. Internal and external validtions of QSAR model: Review[J]. Environmental Chemistry, 2013, 32(7): 1205-1211(in Chinese).
[32] GRAMATICA P. Principles of QSAR models validation: Internal and external[J]. QSAR & Combinatorial Science, 2007, 26(5): 694-701.
[33] XIA X R, MONTEIRO-RIVIERE N A, RIVIERE J E. An index for characterization of nanomaterials in biological systems[J]. Nature Nanotechnology, 2010, 5(9): 671-675.
[34] VITHA M, CARR P W. The chemical interpretation and practice of linear solvation energy relationships in chromatography[J]. Journal of Chromatography A, 2006, 1126(1-2):143-194.